SCIENTIA SINICA Chimica, Volume 48 , Issue 12 : 1611-1618(2018) https://doi.org/10.1360/N032018-00161

Sub-surface initiated atom transfer radical polymerization for robust embedded polymer brushes

More info
  • ReceivedJul 10, 2018
  • AcceptedSep 14, 2018
  • PublishedOct 31, 2018






Supplementary data


本文的补充材料见网络版http://chemcn.scichina.com. 补充材料为作者提供的原始数据, 作者对其学术质量和内容负责.


[1] Xu Q, Ma J, Bao Y. Mater Rev, 2010, 24: 85–88 (in Chinese) [徐群娜, 马建中, 鲍艳. 材料导报, 2010, 24: 85–88]. Google Scholar

[2] Que L, Zhang G, Zhang F. Chem Ind Eng, 2005, 6: 461–466 (in Chinese) [瞿亮, 张国亮, 张凤宝. 化学工业与工程, 2005, 6: 461–466]. Google Scholar

[3] Zoppe JO, Cavusoglu Ataman N, Mocny P, Wang J, Moraes J, Klok HA. Chem Rev, 2017, 1174667 CrossRef PubMed Google Scholar

[4] Zdyrko B, Luzinov I. Macromol Rapid Commun, 2011, 32859-869 CrossRef PubMed Google Scholar

[5] Shah RR, Merreceyes D, Husemann M, Rees I, Abbott NL, Hawker CJ, Hedrick JL. Macromolecules, 2000, 33597-605 CrossRef ADS Google Scholar

[6] Edmondson S, Osborne VL, Huck WTS. Chem Soc Rev, 2004, 3314-22 CrossRef PubMed Google Scholar

[7] Li B, Yu B, Zhou F. Acta Polym Sin, 2016, 10: 1312–1329 (in Chinese) [李斌, 于波, 周峰. 高分子学报, 2016, 10: 1312–1329]. Google Scholar

[8] Sun T, Wang G, Feng L, Liu B, Ma Y, Jiang L, Zhu D. Angew Chem, 2004, 116361-364 CrossRef Google Scholar

[9] Liu X, Ye Q, Yu B, Liang Y, Liu W, Zhou F. Langmuir, 2010, 2612377-12382 CrossRef PubMed Google Scholar

[10] Zhou F, Huck WTS. Phys Chem Chem Phys, 2006, 83815-3823 CrossRef ADS Google Scholar

[11] Wu Y, Xue Y, Pei X, Cai M, Duan H, Huck WTS, Zhou F, Xue Q. J Phys Chem C, 2014, 1182564-2569 CrossRef Google Scholar

[12] Li B, Yu B, Ye Q Zhou F. Prog Chem, 2015, 27: 146–156 (in Chinese) [李斌, 于波, 叶谦, 周峰. 化学进展, 2015, 27: 146–156]. Google Scholar

[13] Wei Q, Cai M, Zhou F, Liu W. Macromolecules, 2013, 469368-9379 CrossRef ADS Google Scholar

[14] Chen M, Briscoe WH, Armes SP, Klein J. Science, 2009, 3231698-1701 CrossRef PubMed ADS Google Scholar

[15] Wright RAE, Wang K, Qu J, Zhao B. Angew Chem Int Ed, 2016, 558656-8660 CrossRef PubMed Google Scholar

[16] Raftari M, Zhang Z, Carter SR, Leggett GJ, Geoghegan M. Soft Matter, 2014, 102759-2766 CrossRef PubMed ADS Google Scholar

[17] Li A, Benetti EM, Tranchida D, Clasohm JN, Schönherr H, Spencer ND. Macromolecules, 2011, 445344-5351 CrossRef ADS Google Scholar

[18] Wei Q, Cai M, Zhou F. Acta Polym Sin, 2012, 10: 1102–1107 (in Chinese) [魏强兵, 蔡美荣, 周峰.分子学报, 2012, 10: 1102–1107]. Google Scholar

[19] Wan F, Pei X, Yu B, Ye Q, Zhou F, Xue Q. ACS Appl Mater Interfaces, 2012, 44557-4565 CrossRef PubMed Google Scholar

[20] Yang WJ, Neoh KG, Kang ET, Teo SLM, Rittschof D. Prog Polym Sci, 2014, 391017-1042 CrossRef Google Scholar

[21] Senaratne W, Andruzzi L, Ober CK. Biomacromolecules, 2005, 62427-2448 CrossRef PubMed Google Scholar

[22] Wong I, Ho CM. Microfluid Nanofluid, 2009, 7291-306 CrossRef PubMed Google Scholar

[23] Hucknall A, Rangarajan S, Chilkoti A. Adv Mater, 2009, 212441-2446 CrossRef Google Scholar

[24] Ladd J, Zhang Z, Chen S, Hower JC, Jiang S. Biomacromolecules, 2008, 91357-1361 CrossRef PubMed Google Scholar

[25] Li B, Yu B, Ye Q, Zhou F. Acc Chem Res, 2015, 48229-237 CrossRef PubMed Google Scholar

[26] Stuart MAC, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Nat Mater, 2010, 9101-113 CrossRef PubMed ADS Google Scholar

[27] Yin X, Cao B, Jiang M, Pan K. J Beijing Univer Chem Technol, 2015, 42: 69–73 (in Chinese) [尹雪宇, 曹兵, 姜敏, 潘凯. 北京化工大学学报(自然科学版), 2015, 42: 69–73]. Google Scholar

[28] Krishnamoorthy M, Hakobyan S, Ramstedt M, Gautrot JE. Chem Rev, 2014, 11410976-11026 CrossRef PubMed Google Scholar

[29] Zhang Q, Gao N, Yang Y, Gong Y, Wang Y, Zhang S, Shi S. Chem J Chin Univer, 2013, 34: 1270–1276 (in Chinese) [张琴, 高娜, 杨扬, 宫永宽, 王彦兵, 张世平, 史素青. 高等学校化学学报, 2013, 34: 1270–1276]. Google Scholar

[30] Barbey R, Lavanant L, Paripovic D, Schüwer N, Sugnaux C, Tugulu S, Klok HA. Chem Rev, 2009, 1095437-5527 CrossRef PubMed Google Scholar

[31] Ye Q, Zhou F, Liu W. Chem Soc Rev, 2011, 404244-4258 CrossRef PubMed Google Scholar

[32] Fan X, Lin L, Dalsin JL, Messersmith PB. J Am Chem Soc, 2005, 12715843-15847 CrossRef PubMed Google Scholar

[33] Roling O, De Bruycker K, Vonhören B, Stricker L, Körsgen M, Arlinghaus HF, Ravoo BJ, Du Prez FE. Angew Chem Int Ed, 2015, 5413126-13129 CrossRef PubMed Google Scholar

[34] Du T, Li B, Wang X, Yu B, Pei X, Huck WTS, Zhou F. Angew Chem Int Ed, 2016, 554260-4264 CrossRef PubMed Google Scholar

[35] Raviv U, Giasson S, Kampf N, Gohy JF, Jérôme R, Klein J. Nature, 2003, 425163-165 CrossRef PubMed ADS Google Scholar

[36] Wei Q, Pei X, Hao J, Cai M, Zhou F, Liu W. Adv Mater Interfaces, 2014, 11400035 CrossRef Google Scholar

[37] Zhang R, Ma S, Wei Q, Ye Q, Yu B, van der Gucht J, Zhou F. Macromolecules, 2015, 486186-6196 CrossRef ADS Google Scholar

[38] Li B, Yu B, Wang X, Guo F, Zhou F. Chin J Polym Sci, 2015, 33163-172 CrossRef Google Scholar

[39] Jeon SI, Lee JH, Andrade JD, De Gennes PG. J Colloid Interface Sci, 1991, 142149-158 CrossRef ADS Google Scholar

[40] Liu H, Ma Z, Yang W, Pei X, Zhou F. Eur Polym J, 2018, doi: 10.1016/j.eurpolymj.2018.07.025 CrossRef Google Scholar

  • Figure 1

    Representative progress in SI-ATRP for surface modification (color online).

  • Figure 2

    Schematic view of the sSI-ATRP process on initiator-embedded polyacrylate acid substrates. The ATRP initiator is copolymerized with the bulk material. The ATRP reaction is triggered both at surface and subsurface when the polyacrylate swells in the monomer solution with catalyst, thick and robust polymer brushes hybrid layer can be formed. When the layer was removed, the underlying initiator moieties offer the opportunity to re-trigger the ATRP reaction when the polymer brush layer is scratched under external forces (color online).

  • Figure 3

    (a) The dependence of surface wettability on the content of initiator in PA-Br matrix after grafting PSPMA brushes. Reaction time, 2 h, the surface is super-hydrophilic after the polymerization when wt% of the initiator was used. (b) The thickness of PSPMA modified sub-surface with 8 wt% initiators with different polymerization time. As the time increased, the sub-surface modification layer thickness increased, when the reaction proceeds to 7 h with a thickness of 20 microns, the thickness of sub-surface modification layer is no longer increase. (c) The SEM and fluorescent images of sub-surface modification substrates. A1–F1, A2–F2 are the SEM photograph of the surface and the cross section micrograph of the substrate at the reaction time of 2–7 h, and A3–F3 are the corresponding fluorescence micrographs of cross section after stained by rhodamine (color online).

  • Figure 4

    (a) Schematic of the friction and abrasion behaviours on PSPMA coated Si wafer. (b) Substrate modified with thick PSPMA brush layer via sSI-ATRP. (c) The friction coefficients on the two kinds of substrates again the shearing loads, inset is the amplified starting stages of the friction. All samples with a grafting reaction time of 6 h were tested, the modified layer prepared by the sub-surface modification method can withstand higher load, and has better wear resistance (color online).

  • Figure 5

    The antifouling activity of substrate modified by PSPMA brush via sSI-ATRP. (a) Schematic view of antifouling on the substrate modifying with thick PSPMA brush layer via sSI-ATRP. (b) The algae cell density of Navicula sp. on PA-Br and PA-PSPMA substrates. The value was counted by optical microscope at 20× magnification. (c) The digital photos of marine antifouling on polyacrylate substrate with single layer of PSPMA brushes by conventional grafting polymerization, and (d) the PA-Br substrate modified with PSPMA brushes via sSI-ATRP after immersion in the South China Sea (April--May 2017, Shenzhen, China) for one month (color online).

  • Figure 6

    (a) The renewable initiation performance of PA-Br substrate. The wettability of PA-Br substrate can be switched from hydrophobic to hydrophilic after polishing and undergoing sSI-ATRP process. (b) Chemical structure of PU-Br, PE-Br and EP-Br. (c) Photographs and values of water contact angles (5 μL) on various polymeric substrates embedded with initiators and these substrates covered by various kinds of polymer brushes; PMAA: polymethylacrylic acid, PNIPAM: Poly(N-isopropyl acrylamide) (color online).


Contact and support