logo

SCIENTIA SINICA Chimica, Volume 47 , Issue 9 : 1085-1101(2017) https://doi.org/10.1360/N032017-00013

Applications of scanning electrochemical microscopy in photoelectrochemistry

More info
  • ReceivedJan 11, 2017
  • AcceptedApr 10, 2017
  • PublishedJul 11, 2017

Abstract


Funded by

厦门大学固体表面物理化学国家重点实验室开放课题(2014010)

陕西省国际科技合作与交流计划项目(2016KW-064)

中国博士后科学基金(2016M592773)

中央高校基本科研业务费专项资金资助项目


References

[1] Ping Y, Rocca D, Galli G. Chem Soc Rev, 2013, 42: 2437-2469 CrossRef PubMed Google Scholar

[2] Ding Q, Meng F, English CR, Cabán-Acevedo M, Shearer MJ, Liang D, Daniel AS, Hamers RJ, Jin S. J Am Chem Soc, 2014, 136: 8504-8507 CrossRef PubMed Google Scholar

[3] Kang D, Kim TW, Kubota SR, Cardiel AC, Cha HG, Choi KS. Chem Rev, 2015, 115: 12839-12887 CrossRef PubMed Google Scholar

[4] Mishra A, Bäuerle P. Angew Chem Int Ed, 2012, 51: 2020-2067 CrossRef PubMed Google Scholar

[5] Kuciauskas D, Monat JE, Villahermosa R, Gray HB, Lewis NS, McCusker JK. J Phys Chem B, 2002, 106: 9347-9358 CrossRef Google Scholar

[6] Ohkita H, Cook S, Astuti Y, Duffy W, Tierney S, Zhang W, Heeney M, McCulloch I, Nelson J, Bradley DDC, Durrant JR. J Am Chem Soc, 2008, 130: 3030-3042 CrossRef PubMed Google Scholar

[7] Cho SK, Park HS, Lee HC, Nam KM, Bard AJ. J Phys Chem C, 2013, 117: 23048-23056 CrossRef Google Scholar

[8] Lu X, Hu Y, Wang W, Du J, He H, Ai R, Liu X. Colloids Surf B-BioInterf, 2013, 103: 608-614 CrossRef PubMed Google Scholar

[9] Ye H, Park HS, Bard AJ. J Phys Chem C, 2011, 115: 12464-12470 CrossRef Google Scholar

[10] Kwak J, Bard AJ. Anal Chem, 1989, 61: 1794-1799 CrossRef Google Scholar

[11] Li F, Unwin PR. J Phys Chem C, 2015, 119: 4031-4043 CrossRef Google Scholar

[12] McKelvey K, Martin S, Robinson C, Unwin PR. J Phys Chem B, 2013, 117: 7878-7888 CrossRef PubMed Google Scholar

[13] Rodríguez-López J, Shen M, Nepomnyashchii AB, Bard AJ. J Am Chem Soc, 2012, 134: 9240-9250 CrossRef PubMed Google Scholar

[14] Kylberg W, Wain AJ, Castro FA. J Phys Chem C, 2012, 116: 17384-17392 CrossRef Google Scholar

[15] Hsu HY, Ji L, Du M, Zhao J, Yu ET, Bard AJ. J Phys Chem C, 2016, 120: 19890-19895 CrossRef Google Scholar

[16] Bard AJ, Fan FRF, Pierce DT, Unwin PR, Wipf DO, Zhou F. Science, 1991, 254: 68-74 CrossRef PubMed ADS Google Scholar

[17] Bard AJ, Mirkin MV. Scanning Electrochemical Microscopy. Boca Raton: CRC Press, 2001. Google Scholar

[18] Edwards MA, Martin S, Whitworth AL, Macpherson JV, Unwin PR. Physiol Meas, 2006, 27: R63-R108 CrossRef PubMed ADS Google Scholar

[19] Park HS, Leonard KC, Bard AJ. J Phys Chem C, 2013, 117: 12093-12102 CrossRef Google Scholar

[20] Yasukawa T, Kaya T, Matsue T. Anal Chem, 1999, 71: 4637-4641 CrossRef Google Scholar

[21] Fernández JL, Raghuveer V, Manthiram A, Bard AJ. J Am Chem Soc, 2005, 127: 13100-13101 CrossRef PubMed Google Scholar

[22] Choi JP, Bard AJ. Anal Chim Acta, 2005, 541: 141-148 CrossRef Google Scholar

[23] Tefashe UM, Loewenstein T, Miura H, Schlettwein D, Wittstock G. J Electroanal Chem, 2010, 650: 24-30 CrossRef Google Scholar

[24] Rodríguez-López J, Alpuche-Avilés MA, Bard AJ. J Am Chem Soc, 2008, 130: 16985-16995 CrossRef PubMed Google Scholar

[25] Shen Y, Nonomura K, Schlettwein D, Zhao C, Wittstock G. Chem Eur J, 2006, 12: 5832-5839 CrossRef PubMed Google Scholar

[26] Denuault G, Frank MHT, Peter LM. Faraday Disc, 1992, 94: 23-35 CrossRef ADS Google Scholar

[27] Luo JL, Lu YC, Ives MB. J Electroanal Chem, 1992, 326: 51-68 CrossRef Google Scholar

[28] Shi C, Wang S, Xia EH, Jiang JJ, Zeng FC, Gao LZ. Sci Rep, 2016, 6: 30135 CrossRef PubMed ADS Google Scholar

[29] Cisek R, Spencer L, Prent N, Zigmantas D, Espie GS, Barzda V. Photosynth Res, 2009, 102: 111-141 CrossRef PubMed Google Scholar

[30] Bumba L, Vácha F. Photosynth Res, 2003, 77: 1-19 CrossRef Google Scholar

[31] Fotiadis D, Qian P, Philippsen A, Bullough PA, Engel A, Hunter CN. J Biol Chem, 2004, 279: 2063-2068 CrossRef PubMed Google Scholar

[32] Poler JC. J Chem Educ, 2000, 77: 1198 CrossRef Google Scholar

[33] Snel JFH, Dassen HHA. J Fluoresc, 2000, 10: 269 CrossRef Google Scholar

[34] Watkins JM, Hechler PJ, Muday GK. Plant Physiol, 2014, 164: 1707-1717 CrossRef PubMed Google Scholar

[35] Tsionsky M, Cardon ZG, Bard AJ, Jackson RB. Plant Physiol, 1997, 113: 895-901 CrossRef Google Scholar

[36] Cai C, Liu B, Mirkin MV, Frank HA, Rusling JF. Anal Chem, 2002, 74: 114-119 CrossRef Google Scholar

[37] Zhu R, Macfie SM, Ding Z. Langmuir, 2008, 24: 14261-14268 CrossRef PubMed Google Scholar

[38] Wang W, Shan D, Yang Y, Wang C, Hu Y, Lu X. Chem Commun, 2011, 47: 6975-6977 CrossRef PubMed Google Scholar

[39] Haram SK, Bard AJ. J Phys Chem B, 2001, 105: 8192-8195 CrossRef Google Scholar

[40] Jia J, Zhang J, Wang F, Han L, Zhou JZ, Mao BW, Zhan D. Chem Commun, 2015, 51: 17700-17703 CrossRef PubMed Google Scholar

[41] Sun P, Li F, Chen Y, Zhang M, Zhang Z, Gao Z, Shao Y. J Am Chem Soc, 2003, 125: 9600-9601 CrossRef PubMed Google Scholar

[42] Zigah D, Rodríguez-López J, Bard AJ. Phys Chem Chem Phys, 2012, 14: 12764-12772 CrossRef PubMed ADS Google Scholar

[43] Lai J, Yuan D, Huang P, Zhang J, Su JJ, Tian ZW, Zhan D. J Phys Chem C, 2016, 120: 16446-16452 CrossRef Google Scholar

[44] Miao W, Choi JP, Bard AJ. J Am Chem Soc, 2002, 124: 14478-14485 CrossRef Google Scholar

[45] Lei R, Stratmann L, Schäfer D, Erichsen T, Neugebauer S, Li N, Schuhmann W. Anal Chem, 2009, 81: 5070-5074 CrossRef PubMed Google Scholar

[46] Konstantinou IK, Albanis TA. Appl Catal B-Environ, 2004, 49: 1-14 CrossRef Google Scholar

[47] Bhattacharya C, Lee HC, Bard AJ. J Phys Chem C, 2013, 117: 9633-9640 CrossRef Google Scholar

[48] Reier T, Oezaslan M, Strasser P. ACS Catal, 2012, 2: 1765-1772 CrossRef Google Scholar

[49] Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y. J Phys Chem Lett, 2012, 3: 399-404 CrossRef PubMed Google Scholar

[50] Seitz LC, Dickens CF, Nishio K, Hikita Y, Montoya J, Doyle A, Kirk C, Vojvodic A, Hwang HY, Norskov JK, Jaramillo TF. Science, 2016, 353: 1011-1014 CrossRef PubMed ADS Google Scholar

[51] Koza JA, He Z, Miller AS, Switzer JA. Chem Mater, 2012, 24: 3567-3573 CrossRef Google Scholar

[52] Ma TY, Dai S, Jaroniec M, Qiao SZ. J Am Chem Soc, 2014, 136: 13925-13931 CrossRef PubMed Google Scholar

[53] Zhao Y, Chen S, Sun B, Su D, Huang X, Liu H, Yan Y, Sun K, Wang G. Sci Rep, 2015, 5: 7629 CrossRef PubMed ADS Google Scholar

[54] Weng YC, Chou YD. Electrochim Acta, 2015, 153: 416-425 CrossRef Google Scholar

[55] Yuan D, Zhang L, Lai J, Xie L, Mao B, Zhan D. Electrochem Commun, 2016, 73: 29-32 CrossRef Google Scholar

[56] Zhou X, Gossage ZT, Simpson BH, Hui J, Barton ZJ, Rodríguez-López J. ACS Nano, 2016, 10: 9346-9352 CrossRef Google Scholar

[57] Simpson BH, Rodríguez-López J. Electrochim Acta, 2015, 179: 74-83 CrossRef Google Scholar

[58] O’Regan B, Graetzel M. Nature, 1991, 353: 737-740 CrossRef ADS Google Scholar

[59] Shen Y, Tefashe UM, Nonomura K, Loewenstein T, Schlettwein D, Wittstock G. Electrochim Acta, 2009, 55: 458-464 CrossRef Google Scholar

[60] Tefashe UM, Nonomura K, Vlachopoulos N, Hagfeldt A, Wittstock G. J Phys Chem C, 2012, 116: 4316-4323 CrossRef Google Scholar

[61] Zhang F, Roznyatovskiy V, Fan FRF, Lynch V, Sessler JL, Bard AJ. J Phys Chem C, 2011, 115: 2592-2599 CrossRef Google Scholar

[62] Martin CJ, Bozic-Weber B, Constable EC, Glatzel T, Housecroft CE, Wright IA. Electrochim Acta, 2014, 119: 86-91 CrossRef Google Scholar

[63] Zhang B, Yuan H, Zhang X, Huang D, Li S, Wang M, Shen Y. ACS Appl Mater Interf, 2014, 6: 20913-20918 CrossRef PubMed Google Scholar

[64] Yuan D, Xiao L, Jia J, Zhang J, Han L, Li P, Mao BW, Zhan D. Anal Chem, 2014, 86: 11972-11976 CrossRef PubMed Google Scholar

[65] Yuan D, Xiao L, Luo J, Luo Y, Meng Q, Mao BW, Zhan D. ACS Appl Mater Interf, 2016, 8: 18150-18156 CrossRef Google Scholar

[66] Etgar L, Gao P, Xue Z, Peng Q, Chandiran AK, Liu B, Nazeeruddin MK, Grätzel M. J Am Chem Soc, 2012, 134: 17396-17399 CrossRef PubMed Google Scholar

[67] Gao P, Grätzel M, Nazeeruddin MK. Energy Environ Sci, 2014, 7: 2448-2463 CrossRef Google Scholar

[68] Bi D, Yi C, Luo J, Décoppet JD, Zhang F, Zakeeruddin SM, Li X, Hagfeldt A, Grätzel M. Nat Energy, 2016, 1: 16142 CrossRef ADS Google Scholar

[69] Alemu G, Li J, Cui J, Xu X, Zhang B, Cao K, Shen Y, Cheng Y, Wang M. J Mater Chem A, 2015, 3: 9216-9222 CrossRef Google Scholar

[70] Hsu HY, Ji L, Du M, Zhao J, Yu ET, Bard AJ. Electrochim Acta, 2016, 220: 205-210 CrossRef Google Scholar

[71] Hengstenberg A, Kranz C, Schuhmann W. Chem Eur J, 2000, 6: 1547-1554 CrossRef Google Scholar

[72] Isik S, Schuhmann W. Angew Chem Int Ed, 2006, 45: 7451-7454 CrossRef PubMed Google Scholar

[73] Sun P, Mirkin MV. Anal Chem, 2006, 78: 6526-6534 CrossRef PubMed Google Scholar

[74] Sun P, Mirkin MV. J Am Chem Soc, 2008, 130: 8241-8250 CrossRef PubMed Google Scholar

[75] Nebel M, Eckhard K, Erichsen T, Schulte A, Schuhmann W. Anal Chem, 2010, 82: 7842-7848 CrossRef PubMed Google Scholar

[76] Guo  J, Ho CN, Sun P. Electroanalysis, 2011, 23: 481-486 CrossRef Google Scholar

[77] Snowden ME, Güell AG, Lai SCS, McKelvey K, Ebejer N, O’Connell MA, Colburn AW, Unwin PR. Anal Chem, 2012, 84: 2483-2491 CrossRef PubMed Google Scholar

[78] Aaronson BDB, Byers JC, Colburn AW, McKelvey K, Unwin PR. Anal Chem, 2015, 87: 4129-4133 CrossRef PubMed Google Scholar

[79] Aaronson BDB, Garoz-Ruiz J, Byers JC, Colina A, Unwin PR. Langmuir, 2015, 31: 12814-12822 CrossRef PubMed Google Scholar

[80] Cortés-Salazar F, Träuble M, Li F, Busnel JM, Gassner AL, Hojeij M, Wittstock G, Girault HH. Anal Chem, 2009, 81: 6889-6896 CrossRef PubMed Google Scholar

[81] Nadappuram BP, McKelvey K, Byers JC, Güell AG, Colburn AW, Lazenby RA, Unwin PR. Anal Chem, 2015, 87: 3566-3573 CrossRef PubMed Google Scholar

  • 图 1

    SECM在光电化学研究领域的应用示例(光合作用[12]、光诱导电荷转移[8]、电致化学发光[13]、光解水[7]、染料敏化太阳能电池[14]、钙钛矿太阳能电池[15]) (网络版彩图)

  • 图 2

    (A) SECM用于光电化学研究的系统装置示意图; (B) 常用探针的种类. (a) 直径25 μm的Pt微圆盘电极的侧视和正视显微镜照片[18]; (b) 光纤环-盘电极的组成结构示意图和正视显微镜照片[7]; (c) 两种双管圆盘微电极的侧视和正视显微镜照片[20] (网络版彩图)

  • 图 3

    SECM的正负反馈模式示意图. (a) 探针远离基底时; (b) 探针靠近导体基底时; (c) 探针接近绝缘体基底时; (d) 正负反馈曲线[10,17] (网络版彩图)

  • 图 4

    SECM的产生-收集模式示意图. (a) 探针产生-基底收集模式; (b) 探针收集-基底产生模式(网络版彩图)

  • 图 5

    SECM的表面诊断工作模式示意图. (a) 基底施加电压, 探针处于开路, 活性物质A吸附在基底上; (b) 基底处于开路, 探针与基底表面的活性物质反应产生正反馈; (c) 基底上的活性物质A逐渐消耗产生负反馈[24] (网络版彩图)

  • 图 6

    应用SECM研究光合作用的示例. (A) 光照时绿色植物叶片(面积200 μm×200 μm)气孔的SECM扫描图[35]; (B) 双管电极研究单个活体原生质体的SECM扫描图[20]; (C) 紫色细菌在含苯醌和Ru(NH3)6Cl3的PBS溶液里的SECM扫描图[36]; (D) (a) 研究植物叶片的SECM装置实物图; (b) 植物叶片在(i和ii) 0.01 mM Cd2+与0.001 M KCl溶液(iii和iv)中不同时间的SECM扫描图[37]; (E) (a) 应用SECM研究植物叶片中提取叶绿体的光合作用过程示意图; (b) SECM在含有铁氰化物溶液中扫描类囊体膜的光生电流结果[12] (网络版彩图)

  • 图 7

    应用SECM研究光诱导电子转移反应的示例. (A) (a) SECM的实验体系示意图; (b) CdS膜在不同光照强度下的渐进曲线[39]; (B) (a) SECM研究负载于ITO基底上的卟啉在含苯醌溶液中光电转移反应机理的示意图; (b) 修饰了ZnTPP的ITO电极在不同波长下的渐进曲线[8]; (C) (a) 应用SECM研究TiO2/Fe3+/Br光电体系协同作用的实验体系示意图; (b) 不同Fe3+浓度溶液中的渐进曲线[40]; (D) (a) SECM研究液/液界面上Ru(bipy)32+和TCNQ的光诱导电子转移反应的实验体系示意图; (b) TCNQ•−的瞬态光电流响应SECM结果图[11]; (E) (a) SECM表面诊断模式用于研究TiO2表面吸附的•OH(ads)的实验体系示意图; (b) 得到的探针电流[42]; (F) (a) SECM研究n型GaAs在Fe2(SO4)3/H2SO4溶液中的光刻蚀示意图; (b) 不同光照强度下10 mM Fe3+溶液中的渐进曲线[43] (网络版彩图)

  • 图 8

    应用SECM研究电致化学发光反应的示例. (A) (a) SECM研究Ru(bpy)32+和TPrA ECL过程的实验体系示意图; (b) 探针检测TPrA•+的模拟浓度分布曲线(内插图为TPrA•+的循环伏安图)[44]; (B) (a) SECM-ECL结合用于研究自由基阴阳离子的实验体系示意图; (b) 不同探针-基底距离条件下红荧烯的ECL发光强度结果图[13]; (C) (a) SECM-ECL结合研究葡萄糖氧化酶的实验体系示意图; (b) pH 8.5溶液中葡萄糖氧化酶样品点的SECM发光图像[45] (网络版彩图)

  • 图 9

    应用SECM研究光分解水催化剂的示例. (A) (a) 以光纤盘-铂环电极做SECM探针研究光解水催化剂的实验体系示意图; (b) 不同掺杂比例的催化剂催化光解水的SECM扫描图[9]; (B) (a) 应用SECM表面诊断模式检测基底吸附羟基的实验体系示意图; (b) 得到的电流-时间曲线[19]; (C) (a) 二维纳米片/CdS量子点的透射电子显微镜(TEM)图; (b) 具有{110}和{001}晶面的二维纳米片的电荷传输机理示意图; (c) CdS量子点敏化前后赤铁矿纳米催化剂的SECM图像[55]; (D) (a) SECM研究AlNDs上沉积的TiO2膜的光解水催化活性增强的实验体系示意图; (b) 氧气生成的SECM图像; (c) TiO2/AlNDs的SEM图[56] (网络版彩图)

  • 图 10

    应用SECM研究染料敏化太阳能电池的示例. (A) (a) SECM研究ZnO/曙红Y薄膜的实验体系示意图; (b) 不同I3浓度下归一化的实验反馈曲线与理论拟合曲线[25]; (B) (a) 应用SECM研究ZnO/D149薄膜的实验体系示意图; (b) 催化剂样品阵列的SECM扫描图[23]; (C) (a) 应用SECM筛选DSSC催化剂的实验体系示意图; (b) 具有不同浓度的N719阵列的SECM光电流图像[14]; (D) (a) SECM研究DSSC催化剂的实验体系示意图; (b) 暗态和光照时的SECM扫描图[62]; (E) (a) SECM研究量子点敏化剂再生动力学的实验体系示意图; (b) 不同浓度的T2电解质中的归一化渐进曲线[63]; (F) (a) 催化剂阵列的制备示意图; (b) TiO2/Mn-CdS催化剂阵列不同光照下的SECM扫描图[64] (网络版彩图)

  • 图 11

    应用SECM研究钙钛矿太阳能催化剂的示例. (A) (a) SECM研究MAPbI3/NiO催化剂的实验体系示意图; (b) MAPbI3/NiO在含1 mM T电解质溶液中不同光照强度下的渐进曲线; (c) MAPbI3/NiO在含1 mM T2电解质溶液中不同光照强度下的渐进曲线[69]; (B) 光照下掺杂了不同比例PbI2的MAPbI3钙钛矿复合材料的SECM光电流图像[15]; (C) 光照下MASnI3−xBrx复合材料的SECM光电流图像[70] (网络版彩图)