SCIENTIA SINICA Chimica, Volume 44 , Issue 6 : 942-952(2014) https://doi.org/10.1360/N032013-00083

Recent advances in microcalorimetric studies for the characterization of metal based catalysts

More info
  • AcceptedJan 8, 2014
  • PublishedJun 16, 2014



[1] Cardonamartinez N, Dumesic JA. Applications of adsorption microcalorimetry to the study of heterogeneous catalysis. Adv Catal, 1992, 38: 149-244. Google Scholar

[2] Auroux A. Acidity characterization by microcalorimetry and relationship with reactivity. Top Catal, 1997, 4: 71-89. Google Scholar

[3] Auroux A. Microcalorimetry methods to study the acidity and reactivity of zeolites, pillared clays and mesoporous materials. Top Catal, 2002, 19: 205-213. Google Scholar

[4] Spiewak BE, Dumesic JA. Microcalorimetric measurements of differential heats of adsorption on reactive catalyst surfaces. Thermochim Acta, 1997, 290: 43-53. Google Scholar

[5] 李林, 王晓东, 沈俭一, 周立幸, 张涛. 高灵敏宽温区吸附热测定装置的建立. 催化学报, 2003, 24: 872-876. Google Scholar

[6] Tripathi AK, Kamble VS, Gupta NM. Microcalorimetry, adsorption, and reaction studies of CO, O2, and CO+O2 over au/Fe2O3, Fe2O3, and polycrystalline gold catalysts. J Catal, 1999, 187: 332-342. Google Scholar

[7] Lin J, Li L, Huang YQ, Zhang WS, Wang XD, Wang AQ, Zhang T. In situ calorimetric study: structural effects on adsorption and catalytic performances for co oxidation over Ir-in-CeO2 and Ir-on-CeO2 catalysts. J Phys Chem C, 2011, 115: 16509-16517. Google Scholar

[8] Spiewak BE, Dumesic JA. Applications of adsorption microcalorimetry for the characterization of metal-based catalysts. Thermochim Acta, 1998, 312: 95-104. Google Scholar

[9] Guerrero-Ruiz A, Maroto-Valiente A, Cerro-Alarcon M, Bachiller-Baeza B, Rodriguez-Ramos I. Surface properties of supported metallic clusters as determined by microcalorimetry of co chemisorption. Top Catal, 2002, 19: 303-311. Google Scholar

[10] Ostrovskii VE. Review of the heats of chemisorption of gases at metals in the context of the problem of "heterogeneous" vs. "Homogeneous" catalytic surfaces. J Therm Anal Calorim, 2009, 95: 609-622. Google Scholar

[11] Campbell CT, Sellers JRV. Enthalpies and entropies of adsorption on well-defined oxide surfaces: experimental measurements. Chem Rev, 2013, 113: 4106-4135. Google Scholar

[12] Cerny S. Adsorption microcalorimetry in surface science studies sixty years of its development into a modern powerful method. Surf Sci Rep, 1996, 26: 3-59. Google Scholar

[13] Li L, Wang XD, Shen JY, Zhou LX, Zhang T. Study on chemisorption of H2, O2, CO and C2H4 on Pt-Ag/SiO2 catalysts by microcalorimetry and FTIR. J Therm Anal Calorim, 2005, 82: 103-107. Google Scholar

[14] Serrano-Ruiz JC, Sepulveda-Escribano A, Rodriguez-Reinoso F. Bimetallic PtSn/C catalysts promoted by ceria: application in the nonoxidative dehydrogenation of isobutane. J Catal, 2007, 246: 158-165. Google Scholar

[15] Shabaker JW, Simonetti DA, Cortright RD, Dumesic JA. Sn-modified Ni catalysts for aqueous-phase reforming: characterization and deactivation studies. J Catal, 2005, 231: 67-76. Google Scholar

[16] Tanksale A, Beltramini JN, Dumesic JA, Lu GQ. Effect of Pt and Pd promoter on Ni supported catalysts: a TPR/TPO/TPD and microcalorimetry study. J Catal, 2008, 258: 366-377. Google Scholar

[17] d'Alnoncourt RN, Kurtz M, Wilmer H, Löffler E, Hagen V, Shen JY, Muhler M. The influence of ZnO on the differential heat of adsorption of CO on Cu catalysts: a microcalorimetric study. J Catal, 2003, 220: 249-253. Google Scholar

[18] Graf B, Muhler M. The influence of the potassium promoter on the kinetics and thermodynamics of CO adsorption on a bulk iron catalyst applied in Fischer-Tropsch synthesis: a quantitative adsorption calorimetry, temperature-programmed desorption, and surface hydrogenation study. Phys Chem Chem Phys, 2011, 13: 3701-3710. Google Scholar

[19] Lillebo AH, Patanou E, Yang J, Blekkan EA, Holmen A. The effect of alkali and alkaline earth elements on cobalt based Fischer-Tropsch catalysts. Catal Today, 2013, 215: 60-66. Google Scholar

[20] Levy RB, Boudart M. Platinum-like behavior of tungsten carbide in surface catalysis. Science, 1973, 181: 547-549. Google Scholar

[21] Chen XW, Zhang T, Zheng MY, Wu ZL, Wu WC, Li C. The reaction route and active site of catalytic decomposition of hydrazine over molybdenum nitride catalyst. J Catal, 2004, 224: 473-478. Google Scholar

[22] Ji N, Zhang T, Zheng MY, Wang AQ, Wang H, Wang XD, Chen JGG. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angew Chem Int Ed, 2008, 47: 8510-8513. Google Scholar

[23] Wu ZL, Maroto-Valiente A, Guerrero-Ruiz A, Rodriguez-Ramos I, Li C, Xin Q. Microcalorimetric and IR spectroscopic studies of CO adsorption on molybdenum nitride catalysts. Phys Chem Chem Phys, 2003, 5: 1703-1707. Google Scholar

[24] Cheng RH, Shu YY, Li L, Sun J, Wang XD, Zhang T. CO adsorption on highly dispersed MoP/Al2O3 prepared with citric acid. Thermochim Acta, 2006, 450: 42-46. Google Scholar

[25] Cheng RH, Shu YY, Li L, Zheng MY, Wang XD, Wang AQ, Zhang T. Synthesis and characterization of high surface area molybdenum phosphide. Appl Catal A, 2007, 316: 160-168. Google Scholar

[26] Sun J, Zheng MY, Wang XD, Wang AQ, Cheng RH, Li T, Zhang T. Catalytic performance of activated carbon supported tungsten carbide for hydrazine decomposition. Catal Lett, 2008, 123: 150-155. Google Scholar

[27] 孙军, 王兴棠, 王晓东, 郑明远, 王爱琴, 张涛. 不同晶相碳化钨的肼分解性能及其CO微量吸附量热研究. 催化学报, 2008, 29: 710-714. Google Scholar

[28] Li L, Wang XD, Zhao XQ, Zheng MY, Cheng RH, Zhou LX, Zhang T. Microcalorimetric studies of the iridium catalyst for hydrazine decomposition reaction. Thermochim Acta, 2005, 434: 119-124. Google Scholar

[29] 王兴棠, 李林, 黄延强, 王晓东, 张涛. 担载型铱催化剂上CO吸附量热和红外光谱研究. 催化学报, 2008, 29: 1231-1236. Google Scholar

[30] Dongil AB, Bachiller-Baeza B, Rodriguez-Ramos I, Guerrero-Ruiz A, Mondelli C, Baiker A. Structural properties of alumina- and silica-supported iridium catalysts and their behavior in the enantioselective hydrogenation of ethyl pyruvate. Appl Catal A, 2013, 451: 14-20. Google Scholar

[31] Lin J, Huang YQ, Li L, Qiao BT, Wang XD, Wang AQ, Zhang T. Exerting the structural advantages of Ir-in-CeO2 and Ir-on-CeO2 to widen the operating temperature window for preferential CO oxidation. Chem Eng J, 2011, 168: 822-826. Google Scholar

[32] Xia XY, Strunk J, Busser W, Comotti M, Schuth F. Muhler M. Thermodynamics and kinetics of the adsorption of carbon monoxide on supported gold catalysts probed by static adsorption microcalorimetry: the role of the support. J Phys Chem C, 2009, 113: 9328-9335. Google Scholar

[33] Alvarez-Rodriguez J, Rodriguez-Ramos I, Guerrero-Ruiz A, Gallegos-Suarez E, Arcoya A. Influence of the nature of support on Ru- supported catalysts for selective hydrogenation of citral. Chem Eng J, 2012, 204: 169-178. Google Scholar

[34] Cerro-Alarcon M, Maroto-Valiente A, Rodriguez-Ramos I, Guerrero-Ruiz A. Surface sites on carbon-supported Ru, Co and Ni nanoparticles as determined by microcalorimetry of co adsorption. Thermochim Acta, 2005, 434: 100-106. Google Scholar

[35] Maroto-Valiente A, Rodriguez-Ramos I, Guerrero-Ruiz A. Surface study of rhodium nanoparticles supported on alumina. Catal Today, 2004, 93-95: 567-574. Google Scholar

[36] Maroto-Valiente A, Cerro-Alarcon M, Guerrero-Ruiz A, Rodriguez-Ramos I. Effect of the metal precursor on the surface site distribution of Al2O3-supported Ru catalysts: catalytic effects on the n-butane/H2 test. Appl Catal A, 2005, 283: 23-32. Google Scholar

[37] Serrano-Ruiz JC, Lopez-Cudero A, Solla-Gullon J, Sepulveda-Escribano A, Aldaz A, Rodriguez-Reinoso F. Hydrogenation of alpha, beta unsaturated aldehydes over polycrystalline, (111) and (100) preferentially oriented Pt nanoparticles supported on carbon. J Catal, 2008, 253: 159-166. Google Scholar

[38] Uner D, Uner M. Adsorption calorimetry in supported catalyst characterization: adsorption structure sensitivity on Pt/-gamma-Al2O3. Thermochim Acta, 2005, 434: 107-112. Google Scholar

[39] Patanou E, Tveten EZ, Chen D, Holmen A, Blekkan EA. Microcalorimetric studies of H2 and CO on Co/gamma-Al2O3 catalysts for Fischer-Tropsch synthesis. Catal Today, 2013, 214: 19-24. Google Scholar

[40] d'Alnoncourt RN, Xia X, Strunk J, Loffler E, Hinrichsen O, Muhler M. The influence of strongly reducing conditions on strong metal-support interactions in Cu/ZnO catalysts used for methanol synthesis. Phys Chem Chem Phys, 2006, 8: 1525-1538. Google Scholar

[41] Wei X, Wang AQ, Yang XF, Li L, Zhang T. Synthesis of Pt-Cu/SiO2 catalysts with different structures and their application in hydrodechlorination of 1,2-dichloroethane. Appl Catal B, 2012, 121: 105-114. Google Scholar

[42] Li L, Wang XD, Wang AQ, Shen JY, Zhang T. Relationship between adsorption properties of Pt-Cu/SiO2 catalysts and their catalytic performance for selective hydrodechlorination of 1,2-dichloroethane to ethylene. Thermochim Acta, 2009, 494: 99-103. Google Scholar

[43] Vadlamannati LS, Kovalchuk VI, d'Itri JL. Dechlorination of 1,2-dichloroethane catalyzed by Pt-Cu/C: unraveling the role of each metal. Catal Lett, 1999, 58: 173-178. Google Scholar

[44] Shen JY, Hill JM, Watwe RM, Spiewak BE, Dumesic JA. Microcalorimetric, infrared spectroscopic, and DFT studies of ethylene adsorption on Pt/SiO2 and Pt-Sn/SiO2 catalysts. J Phys Chem B, 1999, 103: 3923-3934. Google Scholar

[45] Stuck A, Wartnaby CE, Yeo YY, King DA.. Google Scholar


Contact and support