SCIENTIA SINICA Chimica, Volume 43 , Issue 12 : 1839-1844(2013) https://doi.org/10.1360/032013-272

Polymer-supported flexible substrate for surface enhanced Raman spectroscopy

More info
  • AcceptedOct 8, 2013
  • PublishedDec 12, 2013



[1] Fleischmann M, Hendra PJ, Mcquillan AJ. Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett, 1974, 26: 163-166. Google Scholar

[2] Albrecht MG, Creighton JA. Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc, 1977, 99: 5215-5217. Google Scholar

[3] Jeanmaire DL, van Duyne RP. Surface Raman spectroelectrochemistry Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on anodized ailver electrode. J Electroanal Chem, 1977, 84: 1-20. Google Scholar

[4] Zhang R, Zhang Y, Dong ZC, Jiang S, Zhang C, Chen G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang JL, Hou JG. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature, 2013, 498: 82-86. Google Scholar

[5] Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett, 1997, 78: 1667-1670. Google Scholar

[6] Nie S, Emory SR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 1997, 275: 1102-1106. Google Scholar

[7] Le Ru EC, Etchegoin PG, Meyer M. Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection. J Chem Phys, 2006, 125: 204701. Google Scholar

[8] Dlott DD, Fang Y, Seong NH. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science, 2008, 321: 388-392. Google Scholar

[9] Freeman RG, Grabar KC, Allison KJ, Bright BM, Davis JA, Guthrie AP, Hommer MB, Jackson MA, Smith PC, Walter DG, Natan MJ. Self-assembled metal colloid monolayers: An approach to sers substrates. Science, 1995, 267: 1629-1632. Google Scholar

[10] Im H, Bantz KC, Lindquist NC, Haynes CL, Oh SH. Vertically oriented sub-10-nm plasmonic nanogap arrays. Nano Lett, 2010, 10: 2231-2236. Google Scholar

[11] Malinsky MD, Kelly KL, Schatz GC, van Duyne RP. Nanosphere lithography: Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles. J Phys Chem B, 2001, 105: 2343-2350. Google Scholar

[12] Anderson MS. Locally enhanced Raman spectroscopy with an atomic force microscope. Appl Phys Lett, 2000, 76: 3130-3132. Google Scholar

[13] Polavarapu L, Liz-Marzan LM. Towards low-cost flexible substrates for nanoplasmonic sensing. Phys Chem Chem Phys, 2013, 15: 5288-5300. Google Scholar

[14] Vo-Dinh T, Hiromoto MYK, Begun GM, Moody RL. Surface-enhanced Raman spectrometry for trace organic-analysis. Anal Chem, 1984, 56: 1667-1670. Google Scholar

[15] Berthod A, Laserna JJ, Winefordner JD. Analysis by surface enhanced Raman-spectroscopy on silver hydrosols and silver coated filter papers. J Pharm Biomed Anal, 1988, 6: 599-608. Google Scholar

[16] Vo-Dinh T, Houck K, Stokes DL. Surface-enhanced Raman gene probes. Anal Chem, 1994, 66: 3379-3383. Google Scholar

[17] Niu ZQ, Fang Y. Surface-enhanced Raman scattering of single-walled carbon nanotubes on silver-coated and gold-coated filter paper. J Colloid Interface Sci, 2006, 303: 224-228. Google Scholar

[18] Cheng ML, Tsai BC, Yang J. Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution. Anal Chim Acta, 2011, 708: 89-96. Google Scholar

[19] Qu LL, Li DW, Xue JQ, Zhai WL, Fossey JS, Long YT. Batch fabrication of disposable screen printed SERS arrays. Lab Chip, 2012, 12: 876-881. Google Scholar

[20] Singh JP, Chu HY, Abell J, Tripp RA, Zhao YP. Flexible and mechanical strain resistant large area SERS active substrates. Nanoscale, 2012, 4: 3410-3414. Google Scholar

[21] Zhang R, Xu BB, Liu XQ, Zhang YL, Xu Y, Chen QD, Sun HO. Highly efficient SERS test strips. Chem Commun, 2012, 48: 5913-5915. Google Scholar

[22] Yu WW, White IM. Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst, 2013, 138: 1020-1025. Google Scholar

[23] Aksu S, Huang M, Artar A, Yanik AA, Selvarasah S, Dokmeci MR, Altug H. Flexible plasmonics on unconventional and nonplanar substrates. Adv Mater, 2011, 23: 4422-4430. Google Scholar

[24] Lu G, Li H, Zhang H. Nanoparticle-coated PDMS elastomers for enhancement of Raman scattering. Chem Commun, 2011, 47: 8560-8562. Google Scholar

[25] Lee KL, Chen PW, Wu SH, Huang JB, Yang SY, Wei PK. Enhancing surface plasmon detection using template-stripped gold nanoslit arrays on plastic films. ACS Nano, 2012, 6: 2931-2939. Google Scholar

[26] Aldeanueva-Potel P, Correa-Duarte MA, Alvarez-Puebla RA, Liz-Marzan LM. Free-standing carbon nanotube films as optical accumulators for multiplex SERRS attomolar detection. ACS Appl Mater Inter, 2010, 2: 19-22. Google Scholar

[27] Xu C, Wang X. Fabrication of flexible metal-nanoparticte film using graphene oxide sheets as substrates. Small, 2009, 5: 2212-2217. Google Scholar

[28] Xu WG, Ling X, Xiao JQ, Dresselhaus MS, Kong J, Xu HX, Liu ZF, Zhang J. Surface enhanced Raman spectroscopy on a flat graphene surface. Proc Natl Acad Sci USA, 2012, 109: 9281-9286. Google Scholar

[29] Kim K, Han HS, Choi I, Lee C, Hong SG, Suh SH, Lee LP, Kang T. Interfacial liquid-state surface-enhanced Raman spectroscopy. Nat Commun, 2013, 4: 2182. Google Scholar


Contact and support