logo

SCIENTIA SINICA Chimica, Volume 43 , Issue 12 : 1736-1747(2013) https://doi.org/10.1360/032013-252

Hydrogenation and modulation of the low dimensional inorganic functional materials

More info
  • AcceptedOct 11, 2013
  • PublishedDec 12, 2013

Abstract


References

[1] Jang HW, Felker DA, Bark CW, Wang Y, Niranjan MK, Nelson CT, Zhang Y, Su D, Folkman CM, Baek SH, Lee S, Janicka K, Zhu Y, Pan XQ, Fong DD, Tsymbal EY, Rzchowski MS, Eom CB. Metallic and insulating oxide interfaces controlled by electronic correlations. Science, 2011, 331: 886-889. Google Scholar

[2] Malvankar NS, Vargas M, Nevin KP, Franks AE, Leang C, Kim BC, Inoue K, Mester T, Covalla SF, Johnson JP, Rotello VM, Tuominen MT, Lovley DR. Tunable metallic-like conductivity in microbial nanowire networks. Nat Nano, 2011, 6: 573-579. Google Scholar

[3] Ohno H. Making nonmagnetic semiconductors ferromagnetic. Science, 1998, 281: 951-956. Google Scholar

[4] Kim J, Wong CY, Scholes GD. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots. Acc Chem Res, 2009, 42: 1037-1046. Google Scholar

[5] Tokura T. Corrected-electron physics in transition-metal oxides. Phys Today, 2003, 56: 50-55. Google Scholar

[6] Pernot G, Stoffel M, Savic I, Pezzoli F, Chen P, Savelli G, Jacquot A, Schumann J, Denker U, Mönch I, Deneke C, Schmidt OG, Rampnoux JM, Wang S, Plissonnier M, Rastelli A, Dilhaire S, Mingo N. Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers. Nat Mater, 2010, 9: 491-495. Google Scholar

[7] Qu L, Liu Y, Baek JB, Dai L. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano, 2010, 4: 1321-1326. Google Scholar

[8] Wang Y, Shao Y, Matson DW, Li J, Lin Y. Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano, 2010, 4: 1790-1798. Google Scholar

[9] Jeon IY, Choi HJ, Jung SM, Seo JM, Kim MJ, Dai L, Baek JB. Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J Am Chem Soc, 2012, 135: 1386-1393. Google Scholar

[10] Chen D, Feng H, Li J. Graphene oxide: Preparation, functionalization, and electrochemical applications. Chem Rev, 2012, 112: 6027-6053. Google Scholar

[11] Yoo E, Nakamura J, Zhou H. N-doped graphene nanosheets for Li-air fuel cells under acidic conditions. Energy Environ Sci, 2012, 5: 6928-6932. Google Scholar

[12] Some S, Kim J, Lee K, Kulkarni A, Yoon Y, Lee S, Kim T, Lee H. Highly air-stable phosphorus-doped n-type graphene field-effect transistors. Adv Mater, 2012, 24: 5481-5486. Google Scholar

[13] Chang DW, Lee EK, Park EY, Yu H, Choi HJ, Jeon IY, Sohn GJ, Shin D, Park N, Oh JH, Dai L, Baek JB. Nitrogen-doped graphene nanoplatelets from simple solution edge-functionalization for n-type field-effect transistors. J Am Chem Soc, 2013, 135: 8981-8988. Google Scholar

[14] Eda G, Fujita T, Yamaguchi H, Voiry D, Chen M, Chhowalla M. Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano, 2012, 6: 7311-7317. Google Scholar

[15] Zak A, Feldman Y, Lyakhovitskaya V, Leitus G, Popovitz-Biro R, Wachtel E, Cohen H, Reich S, Tenne R. Alkali metal intercalated fullerene-like MS2 (M = W, Mo) nanoparticles and their properties. J Am Chem Soc, 2002, 124: 4747-4758. Google Scholar

[16] Mattheiss LF. Band structures of transition-metal-dichalcogenide layer compounds. Phy Rev B, 1973, 8: 3719-3740. Google Scholar

[17] Lee S, Cheng C, Guo H, Hippalgaonkar K, Wang K, Suh J, Liu K, Wu JQ. Axially engineered metal-insulator phase transition by graded doping VO2 nanowires. J Am Chem Soc, 2013, 135: 4850-4855. Google Scholar

[18] Gu Q, Falk A, Wu JQ, Ouyang L, Park H. Current-driven phase oscillation and domain-wall propagation in WxV1-xO2 nanobeams. Nano Letters, 2007, 7: 363-366. Google Scholar

[19] Strelcov E, Tselev A, Ivanov I, Budai JD, Zhang J, Tischler JZ, Kravchenko I, Kalinin SV, Kolmakov A. Doping-based stabilization of the M2 phase in free-standing VO2 nanostructures at room temperature. Nano Letter, 2012, 12: 6198-6205. Google Scholar

[20] Xia T, Chen XB. Revealing the structural properties of hydrogenated black TiO2 nanocrystals. J Mater Chem A, 2013, 1: 2983-2989. Google Scholar

[21] Tang Q, Li YF, Zhou Z, Chen YS, Chen ZF. Tuning electronic and magnetic properties of Wurtzite ZnO nanosheets by surface hydrogenation. ACS Appl Mater Interfaces, 2010, 2: 2442-2447. Google Scholar

[22] Li FY, Chen ZF. Tuning electronic and magnetic properties of MoO3 sheets by cutting, hydrogenation, and external strain: A computational investigation. Nanoscale, 2013, 5: 5321-5333. Google Scholar

[23] Pumera M, Wong CHA. Graphane and hydrogenated graphene. Chem Soc Rev, 2013, 42: 5987-5995. Google Scholar

[24] Zhou J, Wang Q, Sun Q, Chen XS, Kawazoe Y, Jena P. Ferromagnetism in semihydrogenated graphene sheet. Nano Lett, 2009, 9: 3867-3870. Google Scholar

[25] Shkrebtii AI, Heritage E, McNelles P, Cabellos JL, Mendoza BS. Graphene and graphane functionalization with hydrogen: Electronic and optical signatures. Phys Status Solidi C, 2012, 9: 1378-1383. Google Scholar

[26] Shin JY, Joo JH, Samuelis D, Maier J. Oxygen-deficient TiO2?d nanoparticles via hydrogen reduction for high rate capability lithium batteries. Chem Mater, 2011, 24: 543-551. Google Scholar

[27] Jiang XD, Zhang YP, Jiang J, Rong YS, Wang YC, Wu YC, Pan CX. Characterization of oxygen vacancy associates within hydrogenated TiO2: A positron annihilation study. J Phys Chem C, 2012, 116: 22619-22624. Google Scholar

[28] Hong WK, Park JB, Yoon J, Kim BJ, Sohn JI, Lee YB, Bae TS, Chang SJ, Huh YS, Son B, Stach EA, Lee T, Welland ME. Hydrogen-induced morphotropic phase transformation of single-crystalline vanadium dioxide nanobeams. Nano Lett, 2013, 13: 1822-1828. Google Scholar

[29] Zheng ZK, Huang BB, Lu JB, Wang ZY, Qin XY, Zhang XY, Dai Y, Whangbo MH. Hydrogenated titania: Synergy of surface modification and morphology improvement for enhanced photocatalytic activity. Chem Commun, 2012, 48: 5733-5735. Google Scholar

[30] Li GC, Zhang ZH, Peng HR, Chen KZ. Mesoporous hydrogenated TiO2 microspheres for high rate capability lithium ion batteries. RSC Adv, 2013, 3: 11507-11510. Google Scholar

[31] Pan X, Zhao Y, Ren GF, Fan ZY. Highly conductive VO2 treated with hydrogen for supercapacitors. Chem Commun, 2013, 49: 3943-3945. Google Scholar

[32] Shen LF, Uchaker E, Zhang XG, Cao GZ. Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium ion batteries. Adv Mater, 2012, 24: 6502-6506. Google Scholar

[33] Wang GM, Ling YC, Wang HY, Yang XY, Wang CC, Zhang JZ, Li Y. Hydrogen-treated WO3 nanoflakes show enhanced photostability. Energy Environ Sci, 2012, 5: 6180-6187. Google Scholar

[34] Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS. Control of graphene's properties by reversible hydrogenation: Evidence for graphane. Science, 2009, 323: 610-613. Google Scholar

[35] Matis BR, Burgess JS, Bulat FA, Friedman AL, Houston BH, Baldwin JW. Surface doping and band gap tunability in hydrogenated graphene. ACS Nano, 2011, 6: 17-22. Google Scholar

[36] Khare BN, Meyyappan M, Cassell AM, Nguyen CV, Han J. Functionalization of carbon nanotubes using atomic hydrogen from a glow discharge. Nano Lett, 2001, 2: 73-77. Google Scholar

[37] Chen XB, Liu L, Yu PY, Mao SS. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011, 331: 746-750. Google Scholar

[38] Lu XH, Wang GM, Zhai T, Yu MH, Gan JY, Tong YX, Li Y. Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett, 2012, 12: 1690-1696. Google Scholar

[39] Wang GM, Wang HY, Ling YC, Tang YC, Yang XY, Fitzmorris RC, Wang CC, Zhang JZ, Li Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett, 2011, 11: 3026-3033. Google Scholar

[40] Yang PH, Xiao X, Li YZ, Ding Y, Qiang PF, Tan XH, Mai WJ, Lin ZY, Wu WZ, Li TQ, Jin HY, Liu PY, Zhou J, Wong CP, Wang ZL. Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano, 2013, 7: 2617-2626. Google Scholar

[41] Lu XH, Wang GM, Xie SL, Shi JY, Li W, Tong YX, Li Y. Efficient photocatalytic hydrogen evolution over hydrogenated ZnO nanorod arrays. Chem Commun, 2012, 48: 7717-7719. Google Scholar

[42] Lin CW, Zhu XJ, Feng J, Wu CZ, Hu SL, Peng J, Guo YQ, Peng LL, Zhao JY, Huang JL, Yang JL, Xie Y. Hydrogen-incorporated TiS2 ultrathin nanosheets with ultrahigh conductivity for stamp-transferrable electrodes. J Am Chem Soc, 2013, 135: 5144-5151. Google Scholar

[43] Wu CZ, Feng F, Feng J, Dai J, Peng LL, Zhao JY, Yang JL, Si C, Wu ZY, Xie Y. Hydrogen-incorporation stabilization of metallic VO2(R) phase to room temperature, displaying promising low-temperature thermoelectric effect. J Am Chem Soc, 2011, 133: 13798-13801. Google Scholar

[44] Ji H, Wei J, Natelson D. Modulation of the electrical properties of VO2 nanobeams using an ionic liquid as a gating medium. Nano Lett, 2012, 12: 2988-2992. Google Scholar

[45] Yuan H, Shimotani H, Tsukazaki A, Ohtomo A, Kawasaki M, Iwasa Y. Hydrogenation-induced surface polarity recognition and proton memory behavior at protic-ionic-liquid/oxide electric-double-layer interfaces. J Am Chem Soc, 2010, 132: 6672-6678. Google Scholar

[46] Ye XC, Chen J, Murray CB. Polymorphism in self-assembled AB6 binary nanocrystal superlattices. J Am Chem Soc, 2011, 133: 2613-2620. Google Scholar

[47] Zhao YX, Dyck JS, Hernandez BM, Burda C. Enhancing thermoelectric performance of ternary nanocrystals through adjusting carrier concentration. J Am Chem Soc, 2010, 132: 4982-4983. Google Scholar

[48] Goodenough JB, Hong HYP. Structures and a Two-band model for the system V1-xCrxO2. Phys Rev B, 1973, 8: 1323-1331. Google Scholar

[49] Mitsumata T, Sakai K, Takimoto J. Giant reduction in dynamic modulus of k-carrageenan magnetic gels. J Phys Chem C, 2006, 110: 20217-20223. Google Scholar

[50] Lu XH, Yu MH, Wang GM, Zhai T, Xie SL, Ling YC, Tong YX, Li Y. H-TiO2@MnO2//H-TiO2@C core-shell nanowires for high performance and flexible asymmetric supercapacitors. Adv Mater, 2013, 25: 267-272. Google Scholar

qqqq

Contact and support