References
[1]
Kuijpers MWA, van Eck D, Kemmere MF, Keurentjes JTF. Cavitation-induced reactions in high-pressure carbon dioxide. Science, 2002,298: 1969-1971.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kuijpers MWA, van Eck D, Kemmere MF, Keurentjes JTF. Cavitation-induced reactions in high-pressure carbon dioxide. Science, 2002,298: 1969-1971&
[2]
Suslick KS. Sonochemistry. Science, 1990, 247: 1439-1445.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Suslick KS. Sonochemistry. Science, 1990, 247: 1439-1445&
[3]
Cravotto G, Cintas P. Power ultrasound in organic systhesis: Moving cavitational chemistry from academia to innovative and large-scaleapplications. Chem Soc Rev, 2006, 35: 180-196.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cravotto G, Cintas P. Power ultrasound in organic systhesis: Moving cavitational chemistry from academia to innovative and large-scaleapplications. Chem Soc Rev, 2006, 35: 180-196&
[4]
Cravotto G, Cintas P. Sonication-assisted fabrication and post-synthetic modifications of graphene-like materials. Chem Eur J, 2010, 16:5246-5259.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cravotto G, Cintas P. Sonication-assisted fabrication and post-synthetic modifications of graphene-like materials. Chem Eur J, 2010, 16:5246-5259&
[5]
Suslick KS, Choe SB, Cichowlas AA, Grinstaff MW. Sonochemical synthesis of amorphous iron. Nature, 1991, 353: 414-416.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Suslick KS, Choe SB, Cichowlas AA, Grinstaff MW. Sonochemical synthesis of amorphous iron. Nature, 1991, 353: 414-416&
[6]
Arul Dhas N, Paul Raj C, Gedanken A. Synthesis, characterization, and properties of metallic copper nanoparticles. Chem Mater, 1998, 10:1446-1452.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Arul Dhas N, Paul Raj C, Gedanken A. Synthesis, characterization, and properties of metallic copper nanoparticles. Chem Mater, 1998, 10:1446-1452&
[7]
Suslick KS, Price GJ. Applications of ultrasound to materials chemistry. Annu Rev Mater Sci, 1999, 29: 295-326.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Suslick KS, Price GJ. Applications of ultrasound to materials chemistry. Annu Rev Mater Sci, 1999, 29: 295-326&
[8]
Hyeon T, Fang MM, Suslick KS. Nanostructured molybdenum carbide: Sonochemical synthesis and catalytic properties. J Am Chem Soc,1996, 118: 5492-5493.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hyeon T, Fang MM, Suslick KS. Nanostructured molybdenum carbide: Sonochemical synthesis and catalytic properties. J Am Chem Soc,1996, 118: 5492-5493&
[9]
Zhu JJ, Lu ZH, Aruna ST, Aurbach D, Gedanken A. Sonochemical synthesis of SnO2 nanoparticles and their preliminary study as Liinsertion electrodes. Chem Mater, 2000, 12: 2557-2566.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhu JJ, Lu ZH, Aruna ST, Aurbach D, Gedanken A. Sonochemical synthesis of SnO2 nanoparticles and their preliminary study as Liinsertion electrodes. Chem Mater, 2000, 12: 2557-2566&
[10]
Mdleleni MM, Hyeon T, Suslick KS. Sonochemical synthesis of nanostructured molybdenum sulfide. J Am Chem Soc, 1998, 120:6189-6190.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mdleleni MM, Hyeon T, Suslick KS. Sonochemical synthesis of nanostructured molybdenum sulfide. J Am Chem Soc, 1998, 120:6189-6190&
[11]
Sun ZY, Zhang HY, An GM, Yang GY, Liu ZM. Supercritical CO2-facilitating large-scale synthesis of CeO2 nanowires and theirapplication for solvent-free selective hydrogenation of nitroarenes. J Mater Chem, 2010, 20: 1947-1952.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sun ZY, Zhang HY, An GM, Yang GY, Liu ZM. Supercritical CO2-facilitating large-scale synthesis of CeO2 nanowires and theirapplication for solvent-free selective hydrogenation of nitroarenes. J Mater Chem, 2010, 20: 1947-1952&
[12]
Huang CL, Zhang HY, Sun ZY, Liu ZM. Chitosan-mediated synthesis of mesoporous α-Fe2O3 nanoparticles and their applications incatalyzing selective oxidation of cyclohexane. Sci China Chem, 2010, 53: 1502-1508.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Huang CL, Zhang HY, Sun ZY, Liu ZM. Chitosan-mediated synthesis of mesoporous α-Fe2O3 nanoparticles and their applications incatalyzing selective oxidation of cyclohexane. Sci China Chem, 2010, 53: 1502-1508&
[13]
Xie Y, Ding KL, Liu ZM, Tao RT, Sun ZY, Zhang HY, An GM. In situ controllable loading of ultrafine noble metal particles on titania. JAm Chem Soc, 2008, 131: 6648-6649.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xie Y, Ding KL, Liu ZM, Tao RT, Sun ZY, Zhang HY, An GM. In situ controllable loading of ultrafine noble metal particles on titania. JAm Chem Soc, 2008, 131: 6648-6649&
[14]
Eberhardt W, Fayet P. Photoemission from mass-selected monodispersed Pt clusters. Phys Rev Lett, 1990, 64: 780-784.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Eberhardt W, Fayet P. Photoemission from mass-selected monodispersed Pt clusters. Phys Rev Lett, 1990, 64: 780-784&
[15]
Sun ZY, Zhao YF, Xie Y, Tao RT, Zhang HY, Huang CL, Liu ZM. The solvent-free selective hydrogenation of nitrobenzene to aniline: Anunexpected catalytic activity of ultrafine Pt nanoparticles deposited on carbon nanotubes. Green Chem, 2010, 12: 1007-1011.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sun ZY, Zhao YF, Xie Y, Tao RT, Zhang HY, Huang CL, Liu ZM. The solvent-free selective hydrogenation of nitrobenzene to aniline: Anunexpected catalytic activity of ultrafine Pt nanoparticles deposited on carbon nanotubes. Green Chem, 2010, 12: 1007-1011&
[16]
Hernandez1 Y, Nicolosi1 V, Lotya1 M, Blighe FM, Sun ZY, De S, McGovern IT, Holland B, Byrne M, Gun'ko Y, Boland J, Niraj P,Duesberg G, Krishnamurti S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN. High-yield production of graphene byliquid-phase exfoliation of graphite. Nature Nanotech, 2008, 3: 563-568.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hernandez1 Y, Nicolosi1 V, Lotya1 M, Blighe FM, Sun ZY, De S, McGovern IT, Holland B, Byrne M, Gun'ko Y, Boland J, Niraj P,Duesberg G, Krishnamurti S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN. High-yield production of graphene byliquid-phase exfoliation of graphite. Nature Nanotech, 2008, 3: 563-568&
[17]
Prozorov T, Prozorov R, Suslick KS. High velocity interparticle collisions driven by ultrasound. J Am Chem Soc, 2004, 126: 13890-13891.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Prozorov T, Prozorov R, Suslick KS. High velocity interparticle collisions driven by ultrasound. J Am Chem Soc, 2004, 126: 13890-13891&
[18]
Nalajala VS, Moholkar VS. Investigations in the physical mechanism of sonocrystallization. Ultrason Sonochem, 2011, 18: 345-355.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nalajala VS, Moholkar VS. Investigations in the physical mechanism of sonocrystallization. Ultrason Sonochem, 2011, 18: 345-355&
[19]
Kumar A, Kumaresan T, Pandit AB, Joshi JB. Characterization of flow phenomena induced by ultrasonic horn. Chem Eng Sci, 2006, 61:7410-7420.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kumar A, Kumaresan T, Pandit AB, Joshi JB. Characterization of flow phenomena induced by ultrasonic horn. Chem Eng Sci, 2006, 61:7410-7420&