SCIENTIA SINICA Chimica, Volume 41 , Issue 8 : 1366-1371(2011) https://doi.org/10.1360/032011-174

High-intensity sonication-assisted synthesis of supported noble metal nanocatalysts

More info
  • AcceptedMay 22, 2011
  • PublishedAug 4, 2011



[1] Kuijpers MWA, van Eck D, Kemmere MF, Keurentjes JTF. Cavitation-induced reactions in high-pressure carbon dioxide. Science, 2002,298: 1969-1971. CrossRef Google Scholar

[2] Suslick KS. Sonochemistry. Science, 1990, 247: 1439-1445. CrossRef Google Scholar

[3] Cravotto G, Cintas P. Power ultrasound in organic systhesis: Moving cavitational chemistry from academia to innovative and large-scaleapplications. Chem Soc Rev, 2006, 35: 180-196. CrossRef Google Scholar

[4] Cravotto G, Cintas P. Sonication-assisted fabrication and post-synthetic modifications of graphene-like materials. Chem Eur J, 2010, 16:5246-5259. Google Scholar

[5] Suslick KS, Choe SB, Cichowlas AA, Grinstaff MW. Sonochemical synthesis of amorphous iron. Nature, 1991, 353: 414-416. CrossRef Google Scholar

[6] Arul Dhas N, Paul Raj C, Gedanken A. Synthesis, characterization, and properties of metallic copper nanoparticles. Chem Mater, 1998, 10:1446-1452. CrossRef Google Scholar

[7] Suslick KS, Price GJ. Applications of ultrasound to materials chemistry. Annu Rev Mater Sci, 1999, 29: 295-326. CrossRef Google Scholar

[8] Hyeon T, Fang MM, Suslick KS. Nanostructured molybdenum carbide: Sonochemical synthesis and catalytic properties. J Am Chem Soc,1996, 118: 5492-5493. CrossRef Google Scholar

[9] Zhu JJ, Lu ZH, Aruna ST, Aurbach D, Gedanken A. Sonochemical synthesis of SnO2 nanoparticles and their preliminary study as Liinsertion electrodes. Chem Mater, 2000, 12: 2557-2566. CrossRef Google Scholar

[10] Mdleleni MM, Hyeon T, Suslick KS. Sonochemical synthesis of nanostructured molybdenum sulfide. J Am Chem Soc, 1998, 120:6189-6190. CrossRef Google Scholar

[11] Sun ZY, Zhang HY, An GM, Yang GY, Liu ZM. Supercritical CO2-facilitating large-scale synthesis of CeO2 nanowires and theirapplication for solvent-free selective hydrogenation of nitroarenes. J Mater Chem, 2010, 20: 1947-1952. CrossRef Google Scholar

[12] Huang CL, Zhang HY, Sun ZY, Liu ZM. Chitosan-mediated synthesis of mesoporous α-Fe2O3 nanoparticles and their applications incatalyzing selective oxidation of cyclohexane. Sci China Chem, 2010, 53: 1502-1508. CrossRef Google Scholar

[13] Xie Y, Ding KL, Liu ZM, Tao RT, Sun ZY, Zhang HY, An GM. In situ controllable loading of ultrafine noble metal particles on titania. JAm Chem Soc, 2008, 131: 6648-6649. Google Scholar

[14] Eberhardt W, Fayet P. Photoemission from mass-selected monodispersed Pt clusters. Phys Rev Lett, 1990, 64: 780-784. CrossRef Google Scholar

[15] Sun ZY, Zhao YF, Xie Y, Tao RT, Zhang HY, Huang CL, Liu ZM. The solvent-free selective hydrogenation of nitrobenzene to aniline: Anunexpected catalytic activity of ultrafine Pt nanoparticles deposited on carbon nanotubes. Green Chem, 2010, 12: 1007-1011. CrossRef Google Scholar

[16] Hernandez1 Y, Nicolosi1 V, Lotya1 M, Blighe FM, Sun ZY, De S, McGovern IT, Holland B, Byrne M, Gun'ko Y, Boland J, Niraj P,Duesberg G, Krishnamurti S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN. High-yield production of graphene byliquid-phase exfoliation of graphite. Nature Nanotech, 2008, 3: 563-568. Google Scholar

[17] Prozorov T, Prozorov R, Suslick KS. High velocity interparticle collisions driven by ultrasound. J Am Chem Soc, 2004, 126: 13890-13891. CrossRef Google Scholar

[18] Nalajala VS, Moholkar VS. Investigations in the physical mechanism of sonocrystallization. Ultrason Sonochem, 2011, 18: 345-355. CrossRef Google Scholar

[19] Kumar A, Kumaresan T, Pandit AB, Joshi JB. Characterization of flow phenomena induced by ultrasonic horn. Chem Eng Sci, 2006, 61:7410-7420. CrossRef Google Scholar