logo

Chinese Journal of Environmental Engineering, Volume 12 , Issue 10 : 2864-2873(2018) https://doi.org/10.12030/j.cjee.201804036

In-situ lime immobilization of cadmium in vegetable field of acid soil zone

More info
  • ReceivedApr 6, 2018
  • AcceptedJun 17, 2018

Abstract


Funded by

公益性行业(农业)科研专项(201403014)


References

[1] BOUSSEN S, SOUBRANDO M, BRIL H, et al. Transfer of lead, zinc and cadmium from mine tailings to wheat (Triticum;aestivum) in carbonated Mediterranean (Northern Tunisia) soils[J]. Geoderma,2013,192(1):227-236. CrossRef Google Scholar

[2] YE X, LI H, MA Y, et al. The bioaccumulation of Cd in rice grains in paddy soils as affected and predicted by soil properties[J]. Journal of Soils & Sediments,2014,14(8):1407-1416. CrossRef Google Scholar

[3] CHAIN E. Ethyl carbamate and hydrocyanic acid in food and beverages:Scientific opinion of the panel on contaminants[J]. EFSA Journal,2007,5(10):1-44. CrossRef Google Scholar

[4] ZHAO F J, MA Y, ZHU Y G, et al. Soil contamination in China: Current status and mitigation strategies[J]. Environmental Science & Technology,2014,49(2):750-759. CrossRef Google Scholar

[5] 董同喜, 杨海雪, 李花粉, 等. 华北农田小麦-玉米轮作体系下土壤重金属积累特征研究[J]. 农业资源与环境学报,2014,31(4):355-365. Google Scholar

[6] 中华人民共和国环境保护部, 中华人民共和国国土资源部. 全国土壤污染状况调查公报[R/OL].[2018-03-01].http://www.zhb.gov.cn/gkml/hbb/qt/201404/t20140417_270670.htm.. Google Scholar

[7] 茹淑华, 耿暖, 张国印, 等. 河北省典型蔬菜产区土壤和蔬菜中重金属累积特征研究[J]. 生态环境学报,2016,25(8):1407-1411. Google Scholar

[8] 曾希柏, 李莲芳, 梅旭荣. 中国蔬菜土壤重金属含量及来源分析[J]. 中国农业科学,2007, 40(11):2507-2517. Google Scholar

[9] 王旭. 广东省蔬菜重金属风险评估研究[D]. 武汉: 华中农业大学,2012. Google Scholar

[10] 余江. 菜园土壤重金属污染特征及蔬菜食用安全性评价[D]. 厦门: 集美大学,2010. Google Scholar

[11] 沈彤, 刘明月, 贾来, 等. 长沙地区蔬菜重金属污染初探[J]. 湖南农业大学学报,2005, 31(1):87-90. Google Scholar

[12] WANG L X, GUO Z H, XIAO X Y, et al. Heavy metal pollution of soils and vegetables in the midstream and downstream of the Xiangjiang River, Hunan Province[J]. Journal of Geographical Sciences,2008,18(3):353-362. CrossRef Google Scholar

[13] 环境保护部. 中国人群暴露参数手册:成人卷[M]. 北京: 中国环境科学出版社,2013. Google Scholar

[14] 串丽敏, 赵同科, 郑怀国, 等. 土壤重金属污染修复技术研究进展[J]. 环境科学与技术, 2014,37(S2):213-222. Google Scholar

[15] 周莉, 郑向群, 丁永祯, 等. 农田镉砷污染防控与作物安全种植技术探讨[J]. 农业环境科学学报,2017,36(4):613-619. Google Scholar

[16] PING L I, WANG X, ZHANG T, et al. Effects of several amendments on rice growth and uptake of copper and cadmium from a contaminated soil[J]. Journal of Environmental Sciences,2008,20(4):449-455. CrossRef Google Scholar

[17] 袁金华, 徐仁扣. 生物质炭对酸性土壤改良作用的研究进展[J].土壤,2012,44(4):541-547. Google Scholar

[18] CHEN S B, ZHU Y G, MA Y B. The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils[J]. Journal of Hazardoous Materials,2006,134(1/2/3):74-79. CrossRef Google Scholar

[19] 曹心德, 魏晓欣, 代革联, 等. 土壤重金属复合污染及其化学钝化修复技术研究进展[J]. 环境工程学报,2011,5(7):1441-1453. Google Scholar

[20] 肖细元, 杨淼, 郭朝晖, 等. 改良剂对污染土壤上蔬菜生长及吸收重金属的影响[J]. 环境科学与技术,2012,35(8):41-46. Google Scholar

[21] 徐明岗, 张青, 曾希柏. 改良剂对黄泥土镉锌复合污染修复效应与机理研究[J]. 环境科学,2007,28(6):1361-1366. Google Scholar

[22] PARADELO R, VIRTO I, CHENU C. Net effect of liming on soil organic carbon stocks: A review[J]. Agriculture Ecosystems & Environment,2015,202:98-107. CrossRef Google Scholar

[23] ZHU H, CHEN C, XU C, et al. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China[J]. Environmental Pollution,2016,219:99-106. CrossRef Google Scholar

[24] 环境保护部. 土壤环境质量标准:GB 15618-1995[S]. 北京: 中国环境科学出版社,1995. Google Scholar

[25] 郭安宁, 段桂兰, 赵中秋, 等. 施加碳酸钙对酸性土壤微生物氮循环的影响[J]. 环境科学,2017,38(8):3483-3488. CrossRef Google Scholar

[26] 王艳红, 李盟军, 唐明灯, 等. 石灰和泥炭配施对叶菜吸收Cd的阻控效应[J]. 农业环境科学学报,2013,32(12):2339-2344. Google Scholar

[27] 曾廷廷, 蔡泽江, 王小利, 等. 酸性土壤施用石灰提高作物产量的整合分析[J]. 中国农业科学,2017,50(13):2519-2527. Google Scholar

[28] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社,2000. Google Scholar

[29] HOUBA V J G, TEMMINGHOFF E J M, GAIKHORST G A, et al. Soil analysis procedures using 0.01 M calcium chloride as extraction reagent[J]. Communications in Soil Science & Plant Analysis,2000,31(9/10):1299-1396. CrossRef Google Scholar

[30] MCGRATH S P, CUNLIFFE C H. A simplified method for the extraction of the metals Fe, Zn, Cu, Ni, Cd, Pb, Cr, Co, and Mn from soils and sewage sludges[J]. Journal of the Science of Food & Agriculture,2010,36(9):794-798. CrossRef Google Scholar

[31] ZHAO F J, MCGRATH S P, CTOSLAND A R. Comparison of three wet digestion methods for the determination of plant sulphur by inductively coupled plasma atomic emission spectroscopy[J]. Communications in Soil Science & Plant Analysis,1994,25(3/4):407-418. CrossRef Google Scholar

[32] 中华人民共和国卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准食品中污染物限量:GB 2762-2017[S]. 北京: 中国标准出版社,2017. Google Scholar

[33] 王美, 李书田. 肥料重金属含量状况及施肥对土壤和作物重金属富集的影响[J]. 植物营养与肥料学报,2014,20(2):466-480. Google Scholar

[34] MCBRIDE M B, TYLER L D, HOVDE D A. Cadmium adsorption by soils and uptake by plants as affected by soil chemical properties[J]. Soil Science Society of America Journal, 1981,45(4):739-744. CrossRef Google Scholar

[35] 熊礼明. 石灰对土壤吸附镉行为及有效性的影响[J]. 环境科学研究,1994,7(1):35-38. Google Scholar

[36] 刘昭兵, 纪雄辉, 彭华, 等. 不同类型钙化合物对污染土壤水稻吸收累积Cd,Pb的影响及机理[J]. 农业环境科学学报,2010,29(1):78-84. Google Scholar

[37] 王凯荣, 张玉烛, 胡荣桂. 不同土壤改良剂对降低重金属污染土壤上水稻糙米铅镉含量的作用[J]. 农业环境科学学报,2007,26(2):476-481. Google Scholar

[38] 王艳红, 李盟军, 唐明灯, 等. 石灰和泥炭配施对叶菜吸收Cd的阻控效应[J]. 农业环境科学学报,2013,32(12):2339-2344. Google Scholar

[39] BANGIRA C, LOEPPERT R H, MOORE T J, et al. Relative effectiveness of CaCO3, and Ca(OH)2, in minimizing metals solubility in contaminated sediment[J]. Journal of Soils & Sediments,2016,17(6):1-10. CrossRef Google Scholar

[40] 赵小虎, 刘文清, 张冲, 等. 蔬菜种植前施用石灰对土壤中有效态重金属含量的影响[J]. 广东农业科学,2007 (7):47-49. Google Scholar

[41] 刘丽, 吴燕明, 周航, 等. 大田条件下施加组配改良剂对蔬菜吸收重金属的影响[J]. 环境工程学报,2015,9(3):1489-1495. Google Scholar

[42] 任露陆, 吴文成, 陈显斌, 等. 碳酸钙与氢氧化钙修复重金属污染土壤效果差异研究[J]. 环境科学与技术,2016,39(5):22-27. Google Scholar

[43] 李素霞, 韦司棋, 刘云霞. 3种改良剂对氮镉互作下小白菜产量和品质的影响[J]. 西南农业学报,2015,28(4):1709-1712. Google Scholar

[44] 孟赐福, 吴益伟. 施用石灰对红壤旱地土壤酸度和油菜产量的影响[J]. 中国油料作物学报,1995,17(2):39-43. Google Scholar

[45] 敖俊华, 黄振瑞, 江永, 等. 石灰施用对酸性土壤养分状况和甘蔗生长的影响[J]. 中国农学通报,2010,26(15):266-269. Google Scholar

[46] ZHOU H, YANG W T, ZHOU X, et al. Accumulation of heavy metals in vegetable species planted in contaminated soils and the health risk assessment[J]. International Journal of Environmental Research & Public Health,2016,13(3):289-300. CrossRef Google Scholar

[47] GRANT C A, CLARKE J M, DUGUID S, et al. Selection and breeding of plant cultivars to minimize cadmium accumulation[J]. Science of the Total Environment,2008,390(2/3):301-310. CrossRef Google Scholar

[48] 龚梦丹, 顾燕青, 王小雨, 等. 杭州市菜地蔬菜重金属污染评价及其健康风险分析[J]. 浙江农业学报,2015,27(6):1024-1031. Google Scholar

[49] KELLER C, MARCHETTI M, ROSSI L, et al. Reduction of cadmium availability to tobacco (Nicotiana tabacum) plants using soil amendments in low cadmium-contaminated agricultural soils: A pot experiment[J]. Plant & Soil,2005,276(2):69-84. CrossRef Google Scholar

[50] 郭利敏, 艾绍英, 唐明灯, 等. 不同改良剂对土壤-叶菜系统Cd迁移累积的调控作用[J]. 农业环境科学学报,2010,29(8):1520-1525. Google Scholar

[51] 倪中应, 石一珺, 谢国雄, 等. 石灰降低酸性农田农产品中重金属积累的效果[J]. 现代农业科技,2018 (1):176-177. Google Scholar

[52] 廖敏, 黄昌勇, 谢正苗. pH对镉在土水系统中的迁移和形态的影响[J]. 环境科学学报, 1999,19(1):81-86. Google Scholar

[53] 丁凌云, 蓝崇钰, 林建平, 等. 不同改良剂对重金属污染农田水稻产量和重金属吸收的影响[J]. 生态环境学报,2006,15(6):1204-1208. Google Scholar

[54] 刘香香. 广东省4种蔬菜中镉与土壤镉污染相关性及阈值研究[D]. 武汉: 华中农业大学, 2012. Google Scholar

[55] SIX L, SMOLDERS E. Future trends in soil cadmium concentration under current cadmium fluxes to European agricultural soils[J]. Science of the Total Environment,2014, 485-486(3):319-328. CrossRef Google Scholar

[56] 闫湘, 王旭, 李秀英, 等. 我国水溶肥料中重金属含量、来源及安全现状[J]. 植物营养与肥料学报,2016,22(1):8-18. Google Scholar

[57] MOOLENAAR S W, LEXMOND T M. Heavy-metal balances of agro-ecosystems in the Netherlands[J]. Netherlands Journal of Agricultural Science,1998,46(2):171-192. Google Scholar

[58] WEISSENGRUBER L, MOLLER K, PUSCHENREITER M, et al. Long-term soil accumulation of potentially toxic elements and selected organic pollutants through application of recycled phosphorus fertilizers for organic farming conditions[J]. Nutrient Cycling in Agroecosystems,2018, 110(3):427-449. CrossRef Google Scholar

[59] 蒋永吉. 不同镉污染农田的原位修复研究[D]. 杨凌: 西北农林科技大学,2017. Google Scholar

[60] 王林, 秦旭, 徐应明, 等. 污灌区镉污染菜地的植物阻隔和钝化修复研究[J]. 农业环境科学学报,2014,33(11):2111-2117. Google Scholar

[61] 王期凯, 郭文娟, 孙国红, 等. 生物炭与肥料复配对土壤重金属镉污染钝化修复效应[J]. 农业资源与环境学报,2015,32(6):583-589. Google Scholar

  • Fig. 1

    Effects of application of CaCO3 or CaO on soil pH and on the CaCl2-extractable Cd concentration in soil

  • Fig. 2

    Effects of using CaCO3 or CaO on Cd concentration in the edible part of different vegetable

  • Fig. 3

    Relationship of CaCl2-extractable Cd in soil and Cd concentration in the edible part of vegetable

  • Table 1   Concentrations of six kinds of heavy metals or metalloids in vegetable soils at experimental site mg·kg

    重金属(类金属)

    含量(mg·kg−1

    pH<6.5土壤环境质量标准/(mg·kg−1

    Cd

    1.06±0.08

    0.3

    As

    16.1±3.11

    30

    Pb

    40.9±0.82

    50

    Cu

    26.8±0.46

    50

    Ni

    40.9±0.82

    70

    Cr

    60.2±9.11

    150

  • Table 2   Estimated Cd accumulation in the upper 20 cm layer of continuous application of agricultural input to vegetable land in Xiangtan county

    农业投入品

    Cd含量/(mg·kg−1

    施用量/(kg·hm−2

    表层土Cd积累量/(mg·(kg·hm2−1

    施用5次后表层土Cd积累量/(mg·(kg·hm2−1

    施用10次后表层土Cd积累量/(mg·(kg·hm2−1

    基肥

    0.05

    375

    7.2×10−6

    3.6×10−5

    7.2×10−5

    CaCO3

    0.28

    4 500

    4.8×10−4

    2.4×10−3

    4.8×10−3

    CaO

    0.12

    3 000

    1.4×10−4

    7.0×10−4

    1.4×10−3

qqqq

Contact and support