logo

Chinese Journal of Environmental Engineering, Volume 12 , Issue 10 : 2833-2844(2018) https://doi.org/10.12030/j.cjee.201804029

Feasibility of thermal remediation of soil contaminated with PAHs

More info
  • ReceivedApr 4, 2018
  • AcceptedJun 18, 2018

Abstract


Funding

中国科学院重点部署项目

中国科学院科技服务网络计划(STS计划)项目


References

[1] MAGI E, BIANCO R, IANNI C, et al. Distribution of polycyclic aromatic hydrocarbons in the sediments of the Adriatic Sea[J]. Environmental Pollution, 2002, 119(1): 91-98. CrossRef Google Scholar

[2] 杨发忠, 颜阳, 张泽志, 等. 多环芳烃研究进展[J]. 云南化工, 2005, 32(2): 44-48. Google Scholar

[3] 张惠灵, 王宇, 周杨, 等. 某焦化厂PM2.5中多环芳烃的排放特征及其对周边环境影响[J]. 环境工程学报, 2017, 10(10): 5571-5576. CrossRef Google Scholar

[4] 刘志阳. 多环芳烃污染土壤修复技术研究进展[J]. 污染防治技术, 2015, 28(3): 19-21. Google Scholar

[5] VELA N, MARTÍNEZ-MENCHÓN M, NAVARRO G, et al. Removal of polycyclic aromatic hydrocarbons (PAHs) from groundwater by heterogeneous photocatalysis under natural sunlight[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 232: 32-40. CrossRef Google Scholar

[6] 龚香宜, 何炎志, 孙云雷. 江汉平原四湖流域上区地下水中多环芳烃分布特征与源解析[J]. 环境科学学报, 2015, 35(3): 789-796. Google Scholar

[7] FLOTRON V, DELTEIL C, PADELLEC Y, et al. Removal of sorbed polycyclic aromatic hydrocarbons from soil, sludge and sediment samples using the Fenton’s reagent process[J]. Chemosphere, 2005, 59(10): 1427-1437. CrossRef Google Scholar

[8] BAVEL V B. Comparison of Fenton’s reagent and ozone oxidation of polycyclic aromatic hydrocarbons in aged contaminated soils[J]. Journal of Soils & Sediments, 2006, 6(4): 208–214. Google Scholar

[9] BROWN G S, BARTON L L, THOMSON B M. Permanganate oxidation of sorbed polycyclic aromatic hydrocarbons[J]. Waste Management, 2003, 23(8): 737-740. CrossRef Google Scholar

[10] FERRARESE E, ANDREOTTOLA G, OPREA I A. Remediation of PAH-contaminated sediments by chemical oxidation[J]. Journal of Hazardous Materials, 2008, 152(1): 128-139. CrossRef Google Scholar

[11] 邹德勋, 骆永明, 徐凤花. 土壤环境中多环芳烃的微生物降解及联合生物修复[J]. 土壤, 2007, 39(3): 334-340. Google Scholar

[12] DAVIS E L. Ground water issue: How heat can enhance in-situ soil and aquifer remediation-important chemical properties and guidance on choosing the appropriate technique [R]. EPA, Office of Solid Waste and Emergency Response, Washington, D.C., 1997. Google Scholar

[13] 中华人民共和国工业和信息化部.关于加快推进环保装备制造业发展的指导意见[EB/OL]. [2017-10-24]. Google Scholar

[14] LEMMING G, HAUSCHILD M Z, CHAMBON J, et al. Environmental impacts of remediation of a trichloroethene contaminated site: Life cycle assessment of remediation alternatives[J]. Environmental Science & Technology, 2010, 44: 9163-9169. Google Scholar

[15] GAO Y F, YANG H, ZHAN X H, et al. Scavenging of BHCs and DDTs from soil by thermal desorption and solvent washing [J]. Environmental Science and Pollution Research, 2013, 20: 1482-1492. CrossRef Google Scholar

[16] MCALEXANDER B L, KREMBS F J, CARDENOSA MENDOZA M. Treatability testing for weathered hydrocarbons in soils: Bioremediation, soil washing, chemical oxidation, and thermal desorption [J]. Soil and Sediment Contamination, 2015, 24: 882-897. CrossRef Google Scholar

[17] HUNG P C, CHANG S H, OUYANG C C, et al. Simultaneous removal of PCDD/Fs, pentachlorophenol and mercury from contaminated soil [J]. Chemosphere, 2016, 144: 50-58. CrossRef Google Scholar

[18] LIM M W, LAU E V, POH P E. A comprehensive guide of remediation technologies for oil contaminated soil: Present works and future directions [J]. Marine Pollution Bulletin, 2016, 109: 14-45. CrossRef Google Scholar

[19] MECHATI F, ROTH E, RENAULT V, et al. Pilot scale and theoretical study of thermal remediation of soils[J]. Environmental Engineering Science, 2004, 21:361-370. CrossRef Google Scholar

[20] 中华人民共和国环境保护部. 土壤和沉积物 多环芳烃的测定 高效液相色谱法: HJ 784-2016[S]. 北京: 中国环境科学出版社, 2016. Google Scholar

[21] 中华人民共和国水利部. 土工试验方法标准: GB/T 50123-1999[S]. 北京:中国计划出版社, 1999. Google Scholar

[22] 北京市环境保护局. 场地土壤环境风险评价筛选值: DB11/T 811-2011[S]. 北京: 中国农业出版社, 2012. Google Scholar

[23] O’BRIEN P L, DESUTTER T M, CASEY F X, et al. Implications of using thermal desorption to remediate contaminated agricultural soil: Physical characteristics and hydraulic processes[J]. Journal of Environmental Quality, 2016, 45(4): 1430-1436. CrossRef Google Scholar

[24] CHEN H E, JIANG Y L, ZHANG W, et al. Experimental study of the stabilization effect of cement on diesel-contaminated soil[J]. Quarterly Journal of Engineering Geology and Hydrogeology 2017, 50(2): 199-205. CrossRef Google Scholar

[25] 南京水利科学研究院. 土工试验规程:SL 237-1999[S]. 北京:中国水利水电出版社, 1999. Google Scholar

[26] 中华人民共和国住房和城乡建设部. 建筑地基基础设计规范:GB 50007-2011[S]. 北京:中国建筑工业出版社, 2011. Google Scholar

[27] O’BRIEN P L, DESUTTER, T M, CASEY F X M, et al. Thermal remediation alters soil properties:A review[J]. Journal of Environmental Management, 2018, 206: 826-835. CrossRef Google Scholar

[28] 陈国兴, 樊良本, 陈甦. 土质学与土力学[M]. 2版. 北京:中国水利水电出版社, 知识产权出版社, 2006. Google Scholar

[29] 汪小庆. 浅谈如何提高混凝土的耐硫酸盐腐蚀性[J]. 铁道工程学报, 2008, 25(7):83-85. Google Scholar

[30] 张光辉. 混凝土结构硫酸盐腐蚀研究综述[J]. 混凝土, 2012(1):49-54. Google Scholar

[31] 中华人民共和国建设部. 岩土工程勘察规范:GB 50021-2001[S]. 北京:中国建筑工业出版社, 2009. Google Scholar

  • Fig. 1

    Simulative apparatus for thermal remediation

  • Fig. 2

    Removal efficiencies of Σ16 PAHs with different times

  • Fig. 3

    Removal efficiencies of Σ16 PAHs with different temperature

  • Fig. 4

    Soil temperature profile in thermal remediation feasibility study

  • Table 1   Density and moisture content of contaminated soil samples

    污染土壤

    密度/(g·cm−3)

    含水率/%

    重污染

    1.52

    33.6

    中污染

    1.98

    23.5

    轻污染

    2.13

    18.9

  • Table 2   Boiling point of Σ15 PAHs   ℃

    PAHs名称

    沸点

    PAHs名称

    沸点

    PAHs名称

    沸点

    218

    342

    苯并(b)荧蒽

    481

    苊烯

    270

    荧蒽

    380

    苯并(k)荧蒽

    480

    278

    403

    苯并(a)芘

    475

    295

    苯并(a)蒽

    435

    茚并(1,2,3-cd)芘

    536

    340

    448

    苯并(g,h,i)苝

    550

  • Table 3   Σ16 PAHs initial concentrations of contaminated soil samples   mg·kg

    PAHs名称

    重污染

    中污染

    轻污染

    筛选值

    49 362

    151.8

    1.80

    50

    苊烯

    10 600

    191.8

    0.48

    309

    7.5

    0.08

    50

    1 633

    45.2

    0.82

    50

    9 139

    307.2

    2.58

    5

    1 694

    54.7

    0.62

    50

    荧蒽

    4 883

    197.9

    13.37

    50

    7 571

    239.8

    19.92

    50

    苯并(a)蒽

    1 392

    59.1

    7.09

    0.05

    1 415

    62.1

    7.70

    50

    苯并(b)荧蒽

    809

    54.3

    7.17

    0.5

    苯并(k)荧蒽

    555

    26.8

    3.93

    5

    苯并(a)芘

    1 698

    78.2

    10.77

    0.2

    二苯并(a,h)蒽

    110

    9.9

    0.66

    0.05

    苯并(g,h,i)苝

    1 288

    61.0

    9.22

    5

    茚并(1,2,3-cd)芘

    1 350

    59.1

    9.12

    0.2

    合计

    93 807

    1 606.4

    95.34

  • Table 4   Soil mass variation and balance before and after thermal remediation   g

    污染土壤

    土壤初始质量

    土壤质量损失

    回收质量

    含水质量

    其他收集物质量

    PAHs质量

    重-1

    1 000.0

    495.5

    486.0

    336.0

    150.0

    93.8

    中-1

    1 000.0

    258.1

    256.8

    235.2

    21.6

    1.6

    轻-1

    1 000.0

    208.9

    207.8

    189.4

    18.4

    0.1

  • Table 5   Σ16 PAHs concentrations in soils after thermal remediation in feasibility study mg·kg

    PAHs名称

    重-1-1

    重-1-2

    重-2-1

    重-2-2

    重-3-1

    重-3-2

    中-1-1

    中-1-2

    轻-1-1

    轻-1-2

    修复目标值

    0.61

    0.19

    1.22

    0.97

    ND

    0.12

    0.11

    0.06

    0.01

    0.02

    0.601

    苊烯

    0.31

    ND

    0.13

    0.10

    0.46

    0.02

    0.02

    0.02

    0.03

    0.02

    733

    0.06

    0.02

    0.02

    0.01

    0.01

    ND

    ND

    0.01

    ND

    ND

    501)

    0.64

    0.03

    0.05

    0.04

    0.17

    ND

    0.03

    0.04

    ND

    ND

    501)

    0.84

    0.22

    8.17

    0.54

    0.28

    1.20

    0.09

    0.06

    0.11

    0.08

    366

    0.04

    0.01

    0.11

    0.01

    0.05

    0.04

    0.01

    ND

    0.01

    ND

    3 770

    荧蒽

    0.54

    3.60

    0.20

    3.47

    0.31

    8.45

    0.04

    0.02

    0.02

    0.01

    503

    0.83

    6.40

    26.20

    4.36

    0.08

    13.80

    0.05

    0.01

    0.01

    0.01

    377

    苯并(a)蒽

    0.07

    0.70

    5.93

    0.49

    0.10

    ND

    0.01

    ND

    ND

    ND

    0.634

    0.23

    2.62

    18.80

    2.08

    0.51

    6.25

    0.02

    0.01

    0.01

    ND

    61.4

    苯并(b)荧蒽

    1.83

    8.55

    18.00

    2.68

    0.13

    8.31

    0.02

    0.01

    ND

    ND

    0.636

    苯并(k)荧蒽

    0.28

    1.76

    4.64

    0.57

    0.60

    1.78

    0.01

    0.01

    ND

    ND

    6.19

    苯并(a)芘

    0.29

    3.04

    9.09

    0.87

    0.48

    2.88

    0.02

    0.01

    ND

    ND

    0.2

    二苯并(a,h)蒽

    0.12

    0.60

    1.56

    0.30

    0.03

    0.43

    0.01

    0.01

    ND

    ND

    0.22

    苯并(g,h,i)苝

    3.15

    11.90

    16.70

    2.54

    0.09

    6.73

    0.02

    0.01

    0.01

    ND

    366

    茚并(1,2,3-cd)芘

    1.70

    9.09

    15.10

    2.04

    0.20

    6.04

    0.01

    0.01

    0.03

    ND

    0.21)

    合计

    11.54

    48.73

    125.92

    21.07

    3.50

    56.05

    0.47

    0.29

    0.24

    0.14

  • Table 6   Basic physical properties of post-thermal remediation soil

    修复时间/h

    颗粒组成/%

    界限含水率和指数

    物理性质指标

    有机质含量/%

    自由膨胀率/%

    砂粒

    粉粒

    黏粒

    液限/%

    塑限/%

    塑性指数

    液性指数

    含水率/%

    密度/g·cm−3

    比重

    饱和度/%

    孔隙比

    A

    B

    C

    D

    E

    0

    77.9

    22.1

    32.8

    18.1

    14.7

    0.8

    29.9

    1.88

    2.64

    81

    0.824

    5.6

    37.5

    24

    6.30

    82.5

    11.2

    27.5

    18.7

    8.8

    0.55

    23.5

    1.91

    2.53

    75

    0.636

    2.9

    20.0

    72

    24.9

    63.3

    11.8

    29.6

    20.7

    8.9

    0.19

    22.4

    2.04

    2.75

    77

    0.650

    2.6

    19.0

  • Table 7   Geo-technical properties of post-thermal remediation soil

    修复时间/h

    固结

    快剪

    固快

    慢剪

    三轴实验UU

    三轴实验CU

    无侧限抗压强度/kPa

    压缩系数/MPa−1

    压缩模量/MPa

    黏聚力/kPa

    摩擦角/(°)

    黏聚力/kPa

    摩擦角/(°)

    黏聚力/kPa

    摩擦角/(°)

    黏聚力/kPa

    摩擦角/(°)

    总应力

    有效应力

    黏聚力/kPa

    内摩擦角/(°)

    黏聚力/kPa

    内摩擦角/(°)

    0

    0.682

    2.7

    12.1

    0.3

    30.1

    4.5

    19.5

    13.1

    11.0

    1.7

    5.0

    20.0

    10.0

    23.1

    20.0

    24

    0.292

    5.6

    32.2

    34.5

    26.5

    34.4

    16.7

    33.9

    22.0

    10.4

    14.0

    21.8

    13.0

    26.7

    69.4

    72

    0.142

    11.6

    29.9

    36.3

    56.0

    34.8

    100.2

    29.0

    26.0

    10.4

    28.0

    27.7

    17.0

    31.5

    70.6

  • Table 8   Soluble salt test of post-thermal remediation soil

    修复时间/h

    阳离子/(mg·kg−1)

    阴离子/(mg·kg−1)

    易溶盐/(mg·kg−1)

    水浸提液 pH

    Na++K+

    Ca2+

    Mg2+

    NH4+

    总计

    Cl

    SO42−

    HCO3

    总计

    0

    3.0

    60.1

    18.2

    0.02

    81.4

    14.2

    120.1

    105.0

    239.2

    320.6

    7.62

    24

    68.6

    80.2

    12.3

    0.23

    161.2

    14.4

    312.2

    52.5

    379.0

    540.3

    7.32

    72

    187.4

    20.0

    6.1

    0.04

    213.6

    23.0

    338.6

    79.2

    440.9

    654.5

    7.52

qqqq

Contact and support