logo

Chinese Journal of Environmental Engineering, Volume 12 , Issue 10 : 2874-2883(2018) https://doi.org/10.12030/j.cjee.201803233

Effect of reducing amendments combination on stabilization remediation of chromium contaminated soil

More info
  • ReceivedMar 28, 2018
  • AcceptedJul 6, 2018

Abstract


Funding

国家科技攻关计划(2015BAD05B02)

现代农业产业技术体系建设专项资金(CARS-16-E09)


References

[1] 董广霞, 李莉娜, 唐桂刚, 等. 中国含铬废物的来源区域分布和处理现状及监管建议[J]. 中国环境监测,2013,29(6):196-199. Google Scholar

[2] 张厚坚, 王兴润, 陈春云, 等. 高原地区铬渣污染场地污染特性研究[J]. 环境工程学报,2010,4(4):915-918. Google Scholar

[3] 罗建峰, 曲东. 青海海北化工厂铬渣堆积场土壤铬污染状况研究[J]. 西北农业学报,2006,15(6):244-247. Google Scholar

[4] 张文, 杨勇, 马泉智, 等. 铬污染土壤还原-固化稳定化过程研究[J]. 环境工程,2014,32(S1):1028-1030. Google Scholar

[5] 裴廷权, 王里奥, 钟山, 等. 典型铬渣简易掩埋场铬渣及土壤铬污染特征和处置分析[J]. 环境工程学报,2008,2(7):994-999. Google Scholar

[6] NARIN I, SURME Y, SOYLAK M, et al. Speciation of Cr(III) and Cr(VI) in environmental samples by solid phase extraction on Ambersorb 563 resin[J]. Journal of Hazardous Materials,2006,136(3):579-584. CrossRef Google Scholar

[7] 姜苹红, 陈灿, 向仁军. 铬污染土壤的单一/复合还原处理及其长期稳定性研究[J]. 环境工程学报,2015,9(10):5091-5095. Google Scholar

[8] 蒋婷婷, 喻恺, 罗启仕, 等. HDTMA 改性蒙脱土对土壤Cr(Ⅵ) 的吸附稳定化研究[J]. 环境科学,2016,37(3):1039-1047. Google Scholar

[9] 李培中, 吕晓健, 王海见, 等. 某电镀厂六价铬污染土壤还原稳定化试剂筛选与过程监测[J]. 环境科学,2017,38(1):368-373. CrossRef Google Scholar

[10] 杨放, 陈倩, 毛志强, 等. 不同化学还原体系下铬污染土壤的处理效率[J]. 环境工程学报,2017,11(6):3832-3838. CrossRef Google Scholar

[11] 王旌, 罗启仕, 张长波, 等. 铬污染土壤的稳定化处理及其长期稳定性研究[J]. 环境科学,2013,34(10):4036-4041. Google Scholar

[12] CUNDY A B, HOPKINSON L, WHITBY R L D. Use of iron-based technologies in contaminated land and groundwater remediation: A review[J]. Science of the Total Environment,2008,400(1/2/3):42-51. CrossRef Google Scholar

[13] ASTRUP T, STIPP S L S, CHRISTENSEN T H. Immobilization of chromate from coal fly ash leachate using an attenuating barrier containing zero-valent iron[J]. Environmental Science and Technology,2000,34(19):4163-4168. CrossRef Google Scholar

[14] 马少云, 祝方, 商执峰, 等. 纳米零价铁铜双金属对铬污染土壤中Cr(Ⅵ) 的还原动力学[J]. 环境科学,2016,37(5):1953-1959. Google Scholar

[15] TSENG J K, BIELEFELDT A R. Low-temperature chromium (VI) biotransformation in soil with varying electron acceptors[J]. Journal of Environmental Quality,2002,31(6):1831-1841. Google Scholar

[16] 粟海锋, 孙英云, 文衍宣, 等. 废糖蜜还原浸出低品位软锰矿[J]. 过程工程学报,2007,7(6):1089-1093. Google Scholar

[17] CHRYSOCHOOU M, JOHNSTON C P. Polysulfide speciation and reactivity in chromate-contaminated soil[J]. Journal of Hazardous Materials,2015,251:87-94. CrossRef Google Scholar

[18] KANTAR C. Heterogeneous processes affecting metal ion transport in the presence of organic ligands: Reactive transport modeling[J]. Earth-Science Reviews,2007,81(3/4):175-198. CrossRef Google Scholar

[19] 刘雪, 王兴润, 张增强. pH 和有机质对铬渣污染土壤中Cr 赋存形态的影响[J]. 环境工程学报,2010,4(6):1436-1440. Google Scholar

[20] 范琴, 王海燕, 颜湘华, 等. 某典型铬盐厂污染场地Cr(Ⅵ) 还原菌的筛选、鉴定及还原特性[J]. 环境工程学报,2018,12(3):863-875. CrossRef Google Scholar

[21] CHRYSOCHOOU M, FERREIRA D R, JOHNSTON C P. Calcium polysulfide treatment of Cr(VI)-contaminated soil[J]. Journal of Hazardous Materials,2010,179(1/2/3):650-657. CrossRef Google Scholar

[22] 刘馥雯, 罗启仕, 卢鑫, 等. 多硫化钙对铬污染土壤处理效果的长期稳定性研究[J]. 环境科学学报,2018,38(5):1999-2007. CrossRef Google Scholar

[23] 卢鑫, 罗启仕, 刘馥雯, 等. 硫化物对电镀厂铬污染土壤的稳定化效果及其机理研究[J]. 环境科学学报,2017,37(6):2315-2321. CrossRef Google Scholar

[24] 刘增俊, 夏旭, 张旭, 等. 铬污染土壤的药剂修复及其长期稳定性研究[J]. 环境工程,2015,33(2):160-163. Google Scholar

[25] DI PALMA L, GUEYE M T, PETRUCCI E. Hexavalent chromium reduction in contaminated soil: A comparison between ferrous sulphate and nanoscale zero-valent iron[J]. Journal of Hazardous Materials,2015,281:70-76. CrossRef Google Scholar

[26] ANTONIO V, MARTHA R, SERGIO H, et al. Pilot scale treatment of chromite ore processing residue using sodium sulfide in single reduction and coupled reduction/stabilization processes[J]. Journal of Hazardous Materials,2012,207-208:97-102. CrossRef Google Scholar

[27] 邓红艳. 某工厂厂区土壤铬污染及其微生物修复研究[D]. 重庆: 重庆大学,2016. Google Scholar

[28] LI J, YAO C L, LIU Y B, et al. The hazardous hexavalent chromium formed on trivalent chromium conversion coating: The origin, influence factors and control measures[J]. Journal of Hazardous Materials,2012,221-222:56-61. CrossRef Google Scholar

[29] PALMER C D, WITTBRODT P R. Processes affecting the remediation of chromium-contaminated sites[J]. Environmental Health Perspectives,1991,92:25-40. Google Scholar

[30] 杨俊香, 兰叶青. 硫化物还原Cr(Ⅵ) 的反应动力学研究[J]. 环境科学学报,2005,25(3):356-360. Google Scholar

[31] 黄莹, 徐民民, 李书鹏, 等. 还原稳定化法修复六价铬污染土壤的中试研究[J]. 环境工程学报,2015,9(2):951-958. Google Scholar

[32] 张辉, 付融冰, 郭小品, 等. 铬污染土壤的还原稳定化修复[J]. 环境工程学报,2017,11(11):6163-6168. CrossRef Google Scholar

[33] LEE T, LIM H, LEE Y, et al. Use of waste iron metal for removal of Cr(Ⅵ) from water[J]. Chemosphere,2003,53(5):479-485. CrossRef Google Scholar

[34] WANG Q, QIAN H, YANG Y, et al. Reduction of hexavalent chromium by carboxymethyl cellulose-stabilized zero-valent iron nanoparticles[J]. Journal of Contaminant Hydrology,2010,114(1/2/3/4):35-42. CrossRef Google Scholar

[35] KHERICI-BOUSNOUBRA H, KHERICI N, DERRADJI E F. Behaviour of chromium VI in a multilayer aquifer in the industrial zone of Annaba, Algeria[J]. Environmental Geology,2009,57(7):1619-1624. CrossRef Google Scholar

[36] CHRYSOCHOOU M, FERREIRA D R, JOHNSTON C P. Calcium polysulfide treatment of Cr(VI)-contaminated soil[J]. Journal of Hazardous Materials,2010,179(1/2/3):650-65. Google Scholar

[37] LJUNG K, OTABBONG E, SELINUS O. Natural and anthropogenic metal inputs to soils in urban Uppsala, Sweden[J]. Environmental Geochemistry and Health,2006,28(4):353-364. CrossRef Google Scholar

[38] CHATTOPADHYAY B, DATTA S, CHATTERJEE A. The environmental impact of waste chromium of tannery agglomerates in the east Calcutta wetland ecosystem[J]. Journal of the Society of Leather Technologists and Chemists,2000,84(2):94-105. Google Scholar

[39] JEAN-SORO L, BORDAS F, BOLLINGER J C. Column leaching of chromium and nickel from a contaminated soil using EDTA and citric acid[J]. Environmental Pollution,2012,164:175-181. CrossRef Google Scholar

  • Fig. 1

    Effect of single or mixed reducing amendments on soil pH

  • Fig. 2

    Effect of single or mixed reducing amendments on soil Cr6+ concentration

  • Fig. 3

    Effect of single or mixed reducing amendments on total Cr and Cr6+ concentration in the leachate

  • Table 1   Physicochemical properties of tested soil

    pH

    CEC/(cmol·kg−1)

    Eh/mV

    总Cr/(mg·kg−1)

    Cr(Ⅵ)/(mg·kg−1)

    Cd/(mg·kg−1)

    Pb/(mg·kg−1)

    Mn/(mg·kg−1)

    8.9

    <1.0

    32

    14 120

    207

    2.97

    35.0

    2 118

  • Table 2   Experimental design of reducing amendments

    药剂配伍

    药剂编码

    样品编号

    药剂添加比例/%

    单一药剂

    CK

    0

    FeSO4

    T1

    3

    Fe0

    T2

    3

    CPS-3

    T3

    3

    CPS-6

    T4

    6

    CPS+铁系化合物

    CPS+FeSO4

    T5

    3+3

    CPS+Fe0

    T6

    CPS+有机碳源

    CPS+G

    T7

    3+3

    CPS+A

    T8

    CPS+Fe0+有机碳源

    CPS+Fe0+G

    T9

    2+2+2

    CPS+Fe0+A

    T10

  • Table 3   Correlation coefficients between soil pH, Cr(Ⅵ) concentration, and

    统计与分析指标

    Cr(Ⅵ)

    LCr(Ⅵ)

    LCr

    LCr(Ⅵ)

    0.697**

    LCr

    0.682**

    0.998**

    pH

    −0.14

    −0.08

    −0.08

qqqq

Contact and support