logo

European Physical Journal D, Volume 36 , Issue 2 : 229-233(2005) https://doi.org/10.1140/epjd/e2005-00226-2

Induced magnetic monopole from trapped Λ-type atom

More info
  • ReceivedOct 11, 2004
  • PublishedJul 19, 2021
PACS numbers

Abstract


References

[1] Dirac P.A.M.. Proc. Roy. Soc. A, 1931, 133: 60 Google Scholar

[2] Polyakov A.M.. Nucl. Phys. B, 1974, 79: 276 Google Scholar

[3] Wu T.T., Yang C.N.. Phys. Rev. D, 1975, 12: 3843 Google Scholar

[4] Berry M.V.. Proc. R. Soc. Lond. A, 1984, 392: 45 Google Scholar

[5] Fang Z., et al. Science, 2003, 302: 92 Google Scholar

[6] Born M., Oppenheimer R.. Ann. Physik, 1930, 84: 457 Google Scholar

[7] Mead C.A., Truhlar D.G., Mead C.A.. J. Chem. Phys., 1979, 70: 2284 Google Scholar

[8] Sun C.P., Ge M.L.. Phys. Rev. D, 1990, 41: 1349 Google Scholar

[9] Leinaas J.M.. Phys. Scripta, 1978, 17: 483 Google Scholar

[10] Moody J., Shapere A., Wilczek F., Zee A.. Phys. Rev. Lett., 1986, 56: 893 Google Scholar

[11] Harris S.E., Lukin M.D.. Phys. Today, 1997, 50: 36 Google Scholar

[12] Sun C.P., Li Y., Liu X.F.. Phys. Rev. Lett., 2003, 91: 147903 Google Scholar

[13] Dum R., Olshanii M.. Phys. Rev. Lett., 1996, 76: 1788 Google Scholar

[14] Visser P.M., Nienhuis G.. Phys. Rev. A, 1998, 57: 4581 Google Scholar

[15] Juzeliunas G., Ohberg P.. Phys. Rev. Lett., 2004, 93: 033602 Google Scholar

[16] Allen L., Padgett M., Babiker M.. Prog. Opt., 1999, 39: 291 Google Scholar

[17] It is pointed out that $\xi \left( r\pm z\right) $ is not an analytical function at the origin ${\bf r}=0$ . In fact we can replace r in (8) with another function $r^{\prime }=( x^{2}+y^{2}+z^{2}+\delta ^{2}) ^{1/2}$ where $\delta$ can be any real number. In this case the Rabi frequency. Google Scholar

[18]

[19] (. Google Scholar

[20]

[21] ) is proportional to $\left[ \xi \left( r^{\prime }\pm z\right) \right] ^{1/2}$ which is analytical in the whole spaces and then may be expanded with Laguerre-Gausse beams [18] in the region near z axes. The Born-Oppenheimer approximation is applicable in the region $r\gg\delta $ where. Google Scholar

[22]

[23] (. Google Scholar

[24]

[25] ) (and then the energy spacings) is large enough. In this region, we have $r^{\prime }\approx r$ and the effective monopole potential (9) is applicable. Google Scholar

[26] Allen L., et al. Phys. Rev. A, 1992, 45: 8185 Google Scholar

[27] Wu T.T., Yang C.N.. Nucl. Phys. B, 1976, 107: 365 Google Scholar

[28] Tamm I.. Z. Phys., 1931, 71: 141 Google Scholar

qqqq

Contact and support