Journal of Energy Chemistry, Volume 29 : 23-30(2019) https://doi.org/10.1016/j.jechem.2018.01.017

Synthesis of jet fuel additive with cyclopentanone

More info
  • ReceivedNov 17, 2017
  • AcceptedJan 24, 2018
  • PublishedFeb 13, 2018



This work was funded by the National Natural Science Foundation of China (nos. 21776273; 21721004; 21690080; 21690082), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB17020100), the National Key Projects for Fundamental Research and Development of China (2016YFA0202801), Dalian Science Foundation for Distinguished Young Scholars (no. 2015R005), Department of Science and Technology of Liaoning Province (under contract of 2015020086-101) and 100-talent project of Dalian Institute of Chemical Physics (DICP).


[1] G.W. Huber, S. Iborra, A. Corma, Chem. Rev., 106 (2006), pp. 4044-4098. CrossRef Google Scholar

[2] N. Yan, Y. Yuan, R. Dykeman, Y. Kou, P.J. Dyson, Angew. Chem. Int. Ed., 49 (2010), pp. 5549-5553. CrossRef Google Scholar

[3] T.D. Matson, K. Barta, A.V. Iretskii, P.C. Ford, J. Am. Chem. Soc., 133 (2011), pp. 14090-14097. CrossRef Google Scholar

[4] X.Y. Wang, R. Rinaldi, Energy Environ. Sci., 5 (2012), pp. 8244-8260. CrossRef Google Scholar

[5] X. Wang, R. Rinaldi, Angew. Chem. Int. Ed., 52 (2013), pp. 11499-11503. CrossRef Google Scholar

[6] P. Sun, G. Gao, Z. Zhao, C. Xia, F. Li, ACS Catal., 4 (2014), pp. 4136-4142. CrossRef Google Scholar

[7] Y. Yang, G. Gao, X. Zhang, F. Li, ACS Catal., 4 (2014), pp. 1419-1425. CrossRef Google Scholar

[8] Q. Xia, Z. Chen, Y. Shao, X. Gong, H. Wang, X. Liu, S.F. Parker, X. Han, S. Yang, Y. Wang, Nat. Commun., 7 (2016), p. 11162. Google Scholar

[9] Y. Wang, S. De, N. Yan, Chem. Commun., 52 (2016), pp. 6210-6224. CrossRef Google Scholar

[10] I.L. Simakova, D.Y. Murzin, J. Energy Chem., 25 (2016), pp. 208-224. Google Scholar

[11] P.P. Yang, Q.N. Xia, X.H. Liu, Y.Q. Wang, J. Energy Chem., 25 (2016), pp. 1015-1020. Google Scholar

[12] T. Jin, L. Qiying, C. Lungang, W. Tiejun, M. Longlong, C. Guanyi, J. Energy Chem., 26 (2017), p. 115. Google Scholar

[13] B. Wang, C. Li, B. He, J. Qi, C. Liang, J. Energy Chem., 26 (2017), pp. 799-807. Google Scholar

[14] M.J. Climent, A. Corma, S. Iborra, Green Chem., 13 (2011), pp. 520-540. CrossRef Google Scholar

[15] M. Besson, P. Gallezot, C. Pinel, Chem. Rev., 114 (2014), pp. 1827-1870. CrossRef Google Scholar

[16] Y. Roman-Leshkov, C.J. Barrett, Z.Y. Liu, J.A. Dumesic, Nature, 447 (2007), pp. 982-985. CrossRef Google Scholar

[17] F. de Clippel, M. Dusselier, R. Van Rompaey, P. Vanelderen, J. Dijkmans, E. Makshina, L. Giebeler, S. Oswald, G.V. Baron, J.F.M. Denayer, P.P. Pescarmona, P.A. Jacobs, B.F. Sels, J. Am. Chem. Soc., 134 (2012), pp. 10089-10101. CrossRef Google Scholar

[18] T. Prasomsri, M. Shetty, K. Murugappan, Y. Roman-Leshkov, Energy Environ. Sci., 7 (2014), pp. 2660-2669. CrossRef Google Scholar

[19] F. Liu, M. Audemar, K. De Oliveira Vigier, J.-M. Clacens, F. De Campo, F. Jerome, Green Chem., 16 (2014), pp. 4110-4114. Google Scholar

[20] A. Osatiashtiani, A.F. Lee, D.R. Brown, J.A. Melero, G. Morales, K. Wilson, Catal. Sci. Technol., 4 (2014), pp. 333-342. CrossRef Google Scholar

[21] S. Van den Bosch, W. Schutyser, R. Vanholme, T. Driessen, S.F. Koelewijn, T. Renders, B. De Meester, W.J.J. Huijgen, W. Dehaen, C.M. Courtin, B. Lagrain, W. Boerjan, B.F. Sels, Energy Environ. Sci., 8 (2015), pp. 1748-1763. CrossRef Google Scholar

[22] Z. Huo, Y. Fang, G. Yao, X. Zeng, D. Ren, F. Jin, J. Energy Chem., 24 (2015), pp. 207-212. Google Scholar

[23] W. Deng, Q. Zhang, Y. Wang, J. Energy Chem., 24 (2015), pp. 595-607. Google Scholar

[24] M.T. Reche, A. Osatiashtiani, L.J. Durndell, M.A. Isaacs, A. Silva, A.F. Lee, K. Wilson, Catal. Sci. Technol., 6 (2016), pp. 7334-7341. CrossRef Google Scholar

[25] P.F. Ma, Z.H. Xiao, S.H. Jin, C. Li, C.H. Liang, J. Energy Chem., 25 (2016), pp. 782-792. Google Scholar

[26] J. Wang, G. Yao, F. Jin, Mol. Catal., 435 (2017), pp. 82-90. Google Scholar

[27] U.S. Energy Information Administration, Monthly Energy Review (April) (2017). Google Scholar

[28] G.W. Huber, J.N. Chheda, C.J. Barrett, J.A. Dumesic, Science, 308 (2005), pp. 1446-1450. CrossRef Google Scholar

[29] J.Q. Bond, D.M. Alonso, D. Wang, R.M. West, J.A. Dumesic, Science, 327 (2010), pp. 1110-1114. CrossRef Google Scholar

[30] B.G. Harvey, R.L. Quintana, Energy Environ. Sci., 3 (2010), pp. 352-357. CrossRef Google Scholar

[31] A. Corma, O. de la Torre, M. Renz, N. Villandier, Angew. Chem. Int. Ed., 50 (2011), pp. 2375-2378. CrossRef Google Scholar

[32] P. Anbarasan, Z.C. Baer, S. Sreekumar, E. Gross, J.B. Binder, H.W. Blanch, D.S. Clark, F.D. Toste, Nature, 491 (2012), pp. 235-239. CrossRef Google Scholar

[33] M. Mascal, S. Dutta, I. Gandarias, Angew. Chem. Int. Ed., 53 (2014), pp. 1854-1857. CrossRef Google Scholar

[34] J. Xin, S. Zhang, D. Yan, O. Ayodele, X. Lu, J. Wang, Green Chem., 16 (2014), pp. 3589-3595. Google Scholar

[35] Q.-N. Xia, Q. Cuan, X.-H. Liu, X.-Q. Gong, G.-Z. Lu, Y.-Q. Wang, Angew. Chem. Int. Ed., 53 (2014), pp. 9755-9760. CrossRef Google Scholar

[36] S. Sankaranarayanapillai, S. Sreekumar, J. Gomes, A. Grippo, G.E. Arab, M. Head-Gordon, F.D. Toste, A.T. Bell, Angew. Chem. Int. Ed., 54 (2015), pp. 4673-4677. CrossRef Google Scholar

[37] J. Yang, N. Li, G. Li, W. Wang, A. Wang, X. Wang, Y. Cong, T. Zhang, Chem. Commun., 50 (2014), pp. 2572-2574. CrossRef Google Scholar

[38] X. Sheng, N. Li, G. Li, W. Wang, J. Yang, Y. Cong, A. Wang, X. Wang, T. Zhang, Sci. Rep., 5 (2015), p. 9565. Google Scholar

[39] F. Chen, N. Li, X. Yang, L. Li, G. Li, S. Li, W. Wang, Y. Hu, A. Wang, Y. Cong, X. Wang, T. Zhang, ACS Sustainable Chem. Eng., 4 (2016), pp. 6160-6166. CrossRef Google Scholar

[40] X. Sheng, G. Li, W. Wang, Y. Cong, X. Wang, G.W. Huber, N. Li, A. Wang, T. Zhang, AIChE J., 62 (2016), pp. 2754-2761. CrossRef Google Scholar

[41] C. Song, S. Eser, H.H. Schobert, P.G. Hatcher, Energy Fuels, 7 (1993), pp. 234-243. CrossRef Google Scholar

[42] L.M. Balster, E. Corporan, M.J. DeWitt, J.T. Edwards, J.S. Ervin, J.L. Graham, S.-Y. Lee, S. Pal, D.K. Phelps, L.R. Rudnick, R.J. Santoro, H.H. Schobert, L.M. Shafer, R.C. Striebich, Z.J. West, G.R. Wilson, R. Woodward, S. Zabarnick, Fuel Process. Technol., 89 (2008), pp. 364-378. Google Scholar

[43] J.S. Heyne, A.L. Boehman, S. Kirby, Energy Fuels, 23 (2009), pp. 5879-5885. CrossRef Google Scholar

[44] L. Türker, S. Variş, Propellants Explos. Pyrotech., 39 (2014), pp. 211-216. CrossRef Google Scholar

[45] M. Hronec, K. Fulajtarova, Catal. Commun., 24 (2012), pp. 100-104. Google Scholar

[46] Y. Yang, Z. Du, Y. Huang, F. Lu, F. Wang, J. Gao, J. Xu, Green Chem., 15 (2013), pp. 1932-1940. CrossRef Google Scholar

[47] R. Fang, H. Liu, R. Luque, Y. Li, Green Chem., 17 (2015), pp. 4183-4188. CrossRef Google Scholar

[48] X.-L. Li, J. Deng, J. Shi, T. Pan, C.-G. Yu, H.-J. Xu, Y. Fu, Green Chem., 17 (2015), pp. 1038-1046. CrossRef Google Scholar

[49] G.S. Zhang, M.M. Zhu, Q. Zhang, Y.M. Liu, H.Y. He, Y. Cao, Green Chem., 18 (2016), pp. 2155-2164. CrossRef Google Scholar

[50] F. Chen, N. Li, W. Wang, A. Wang, Y. Cong, X. Wang, T. Zhang, Chem. Commun., 51 (2015), pp. 11876-11879. CrossRef Google Scholar

[51] X. Zhang, Z. Zhang, F. Wang, Y. Wang, Q. Song, J. Xu, J. Mol. Catal. A, 377 (2013), pp. 102-107. CrossRef Google Scholar

[52] J. Wisniak, M. Hershkowitz, S. Stein, Ind. Eng. Chem. Prod. Res. Dev., 13 (1974), pp. 232-236. CrossRef Google Scholar

[53] L.E. Manzer, Appl. Catal. A, 272 (2004), pp. 249-256. Google Scholar

[54] L. Corbel-Demailly, B.-K. Ly, D.-P. Minh, B. Tapin, C. Especel, F. Epron, A. Cabiac, E. Guillon, M. Besson, C. Pinel, Chem. Sus. Chem., 6 (2013), pp. 2388-2395. CrossRef Google Scholar

[55] C. Michel, J. Zaffran, A.M. Ruppert, J. Matras-Michalska, M. Jedrzejczyk, J. Grams, P. Sautet, Chem. Commun., 50 (2014), pp. 12450-12453. CrossRef Google Scholar

[56] P. Gallezot, D. Richard, Catal. Rev., 40 (1998), pp. 81-126. CrossRef Google Scholar

[57] K.A. Mauritz, R.B. Moore, Chem. Rev., 104 (2004), pp. 4535-4586. CrossRef Google Scholar

[58] B.G. Harvey, M.E. Wright, R.L. Quintana, Energy Fuels, 24 (2010), pp. 267-273. CrossRef Google Scholar

[59] R. Weingarten, G.A. Tompsett, W.C. Conner, G.W. Huber, J. Catal., 279 (2011), pp. 174-182. Google Scholar

[60] P.A. Riveros, Hydrometallurgy, 72 (2004), pp. 279-290. Google Scholar

  • Fig. 1

    Conversion of 1A (black bars), the carbon yields of 1B (red bars), 1C (blue bars) and 1E (yellow bars) over different noble metal catalysts. Reaction conditions: 393 K, 3 MPa H2, 3 h; 0.1 g catalyst, 2.0 g 1A.

  • Fig. 2

    Conversion of 1B (black bars), the carbon yields of 1F (blue bars) and 1G (red bars) over different acidic resins. Reaction condition: 393 K, 0.1 MPa; 1.0 g catalyst; 1B flow rate: 0.04 mL min−1; N2 flow rate: 100 mL min−1.

  • Fig. 3

    Adsorption heat versus NH3 coverage at 353 K on the Nafion (■), Amberlyst-15 (▲), and Amberlyst-36 (●) resins.

  • Fig. 4

    Conversion of 1B (black bars), the carbon yields of 1F (blue bars) and 1G (red bars) over the Amberlyst-15 resin as the function of reactor. Reaction conditions: for fix-bed continuous flow reactor: 393 K, 0.1 MPa, 1.0 g catalyst; 1B flow rate: 0.04 mL min−1; N2 flow rate: 150 mL min−1. For Dean–Stark apparatus and batch reactor: 393 K, 5.5 h; 7.6 g catalyst, 38 g 1B.

  • Fig. 5

    Conversion of 1B (■), the carbon yields of 1F (▼) and 1G (▲) over the Amberlyst-15 resin as the function of system pressure. Reaction conditions: 393 K, 1.0 g catalyst; 1B flow rate: 0.04 mL min−1; N2 flow rate: 150 mL min−1.

  • Fig. 6

    Single-bed (a) and dual-bed catalyst systems (b) used for the direct synthesis of 1G with 1A and hydrogen.

  • Scheme 1

    Reaction pathway for the synthesis of decalin with cyclopentanone and hydrogen.

  • Scheme 2

    Reaction pathways for the generation of different products from the hydrogenation (or hydrogenolysis) of 1A.

  • Scheme 3

    Reaction pathways for the generation of cyclopentylidene-cyclopentanes (i.e. 1F) or 1,2,3,4,5,6,7,8-octahydronaphthalene (i.e. 1G) from the dehydration/rearrangement of 1B.

  • Scheme 4

    Comparison of our previous and current routes for the synthesis of renewable decalin.

  • Table 1.  

    Table 1. Specific surface areas (SBET), average pore volumes, average pore sizes and the amounts of acid sites of different acid resins.


    SBET (m2 g−1)a

    Average pore volume (cm3 g−1)a

    Average pore size (nm)a

    Acid amount (mmol g−1)b
















    a) Measured by N2-physisorption.

    b) Measured by chemical titration.


Contact and support