logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 63 , Issue 7 : 276111(2020) https://doi.org/10.1007/s11433-020-1539-4

Revisiting the breakdown of Stokes-Einstein relation in glass-forming liquids with machine learning

More info
  • ReceivedJan 16, 2020
  • AcceptedMar 5, 2020
  • PublishedMar 25, 2020
PACS numbers

Abstract


Funding

the National Natural Science Foundation of China(Grant,Nos.,11804027,11525520)

the National Basic Research Program of China 973 Program(Grant,No.,2015CB856801)

and the Fundamental Research Funds for the Central Universities(Grant,No.,2018NTST24)


Acknowledgment

We thank all members of the Beijing Metallic Glass Club for the long-term useful discussions. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11804027, and 11525520), the National Basic Research Program of China (Grant No. 2015CB856801), and the Fundamental Research Funds for the Central Universities (Grant No. 2018NTST24).


Interest statement

These authors contributed equally to this work.


Supplementary data

Supporting Information

The supporting information is available online at phys.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Debenedetti P. G., Stillinger F. H.. Nature, 2001, 410259 CrossRef PubMed ADS Google Scholar

[2] Wang W. H.. Prog. Mater. Sci., 2019, 106100561 CrossRef Google Scholar

[3] Qiao J. C., Wang Q., Pelletier J. M., Kato H., Casalini R., Crespo D., Pineda E., Yao Y., Yang Y.. Prog. Mater. Sci., 2019, 104250 CrossRef Google Scholar

[4] Wu Z. W., Kob W., Wang W. H., Xu L.. Nat. Commun., 2018, 95334 CrossRef PubMed ADS arXiv Google Scholar

[5] Luo P., Li Y. Z., Bai H. Y., Wen P., Wang W. H.. Phys. Rev. Lett., 2016, 116175901 CrossRef PubMed ADS Google Scholar

[6] Scopigno T., Ruocco G., Sette F., Monaco G.. Science, 2003, 302849 CrossRef PubMed ADS arXiv Google Scholar

[7] Wang L., Ninarello A., Guan P., Berthier L., Szamel G., Flenner E.. Nat. Commun., 2019, 1026 CrossRef PubMed ADS arXiv Google Scholar

[8] Kawasaki T., Kim K.. Sci. Adv., 2017, 3e1700399 CrossRef PubMed ADS arXiv Google Scholar

[9] Hu Y. C., Li F. X., Li M. Z., Bai H. Y., Wang W. H.. J. Appl. Phys., 2016, 119205108 CrossRef ADS Google Scholar

[10] Soklaski R., Tran V., Nussinov Z., Kelton K. F., Yang L.. Philos. Mag., 2016, 961212 CrossRef ADS arXiv Google Scholar

[11] Xu L., Mallamace F., Yan Z., Starr F. W., Buldyrev S. V., Eugene Stanley H.. Nat. Phys., 2009, 5565 CrossRef ADS Google Scholar

[12] Sastry S., Austen Angell C.. Nat. Mater., 2003, 2739 CrossRef PubMed ADS Google Scholar

[13] Stillinger F. H., Hodgdon J. A.. Phys. Rev. E, 1994, 502064 CrossRef PubMed ADS Google Scholar

[14] Tarjus G., Kivelson D.. J. Chem. Phys., 1995, 1033071 CrossRef ADS Google Scholar

[15] Becker S. R., Poole P. H., Starr F. W.. Phys. Rev. Lett., 2006, 97055901 CrossRef ADS arXiv Google Scholar

[16] Pan S., Wu Z. W., Wang W. H., Li M. Z., Xu L.. Sci. Rep., 2017, 739938 CrossRef PubMed ADS Google Scholar

[17] Schoenholz S. S., Cubuk E. D., Sussman D. M., Kaxiras E., Liu A. J.. Nat. Phys., 2016, 12469 CrossRef ADS Google Scholar

[18] Sun Y. T., Bai H. Y., Li M. Z., Wang W. H.. J. Phys. Chem. Lett., 2017, 83434 CrossRef PubMed Google Scholar

[19] Plimpton S.. J. Comput. Phys., 1995, 1171 CrossRef ADS Google Scholar

[20] Mendelev M. I., Sordelet D. J., Kramer M. J.. J. Appl. Phys., 2007, 102043501 CrossRef ADS Google Scholar

[21] Kob W., Andersen H. C.. Phys. Rev. E, 1995, 524134 CrossRef PubMed ADS arXiv Google Scholar

  • Figure 1

    (Color online) (a) Mean-squared displacements and (b) self-intermediate scattering functions at temperatures ranged from 1500 to 1000 K in steps of 100 K. (c) Self-diffusion coefficient D as a function of structural relaxation time τ scaled by temperature T. The system follows the SE relation till to 1150 K and violates the SE relation below 1150 K.

  • Figure 2

    Total number of clusters formed by connected solid-like atoms and its derivative with respect to temperature. (a) The population has a maximum in number occurring at 1330 K; (b) the main peak of the cluster number derivative at 1140 K, which roughly coincides with the temperature where the SE relation breaks down.

  • Figure 3

    Comparison of the total size of the solid-like atoms in the system with respect to the largest and second largest formed clusters. The size of the largest cluster almost coincides with the total number of solid-like atoms below 1140 K, and the size of the second largest cluster (inset) peaks at 1330 K.

  • Figure 4

    Growth of clusters comprising solid-like atoms in the system. Typical simulation snapshots depicting the growth of clusters at (a) 1500, (b) 1330, (c) 1140, and (d) 860 K (Tg). The percentages show the proportion of solid-like atoms at different temperatures. Different color spheres represent different disconnected clusters.

qqqq

Contact and support