logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 63 , Issue 8 : 284211(2020) https://doi.org/10.1007/s11433-019-1479-3

Broadband transmission-type 1-bit coding metasurface for electromagnetic beam forming and scanning

More info
  • ReceivedSep 3, 2019
  • AcceptedNov 19, 2019
  • PublishedJan 7, 2020
PACS numbers

Abstract


Funding

the National Key Research and Development Program of China(Grant,Nos.,2017YFA0700201,2017YFA0700202,2017YFA0700203)

the National Natural Science Foundation of China(Grant,Nos.,61631007,61731010,61735010,61722106,61701107,61701108)

the Fund for International Cooperation and Exchange of the National Natural Science Foundation of China(Grant,No.,61761136007)

the Overseas Expertise Introduction Project for Discipline Innovation(Grant,No.111-2-05)

the Fundamental Research Funds for the Central Universities

and Postgraduate Research & Practice Innovation Program of Jiangsu Province(Grant,No.,KYCX17_0092)

and the Scientific Research Foundation of Graduate School of Southeast University(Grant,No.,YBJJ-1815)


Acknowledgment

This work was supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0700201, 2017YFA0700202, and 2017YFA0700203), the National Natural Science Foundation of China (Grant Nos. 61631007, 61731010, 61735010, 61722106, 61701107, and 61701108), the Fund for International Cooperation and Exchange of the National Natural Science Foundation of China (Grant No. 61761136007), the Overseas Expertise Introduction Project for Discipline Innovation (Grant No. 111-2-05), the Fundamental Research Funds for the Central Universities, and Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX17_0092), and the Scientific Research Foundation of Graduate School of Southeast University (Grant No. YBJJ-1815).


References

[1] Sievenpiper D., Zhang L. J., Broas R. F. J., Alexopolous N. G., Yablonovitch E.. IEEE Trans. Microwave Theor. Techn., 1999, 472059 CrossRef Google Scholar

[2] Kuester E. F., Mohamed M. A., Piket-May M., Holloway C. L.. IEEE Trans. Antennas Propagat., 2003, 512641 CrossRef Google Scholar

[3] R. E. Collin, Field Theory of Guided Waves (McGraw-Hill, New York, 1960). Google Scholar

[4] Yu N., Genevet P., Kats M. A., Aieta F., Tetienne J. P., Capasso F., Gaburro Z.. Science, 2011, 334333 CrossRef PubMed Google Scholar

[5] Holloway C. L., Kuester E. F., Gordon J. A., O’Hara J., Booth J., Smith D. R.. IEEE Antennas Propag. Mag., 2012, 5410 CrossRef Google Scholar

[6] Chen H. T., Taylor A. J., Yu N.. Rep. Prog. Phys., 2016, 79076401 CrossRef PubMed Google Scholar

[7] Ma H. F., Wang G. Z., Kong G. S., Cui T. J.. Opt. Mater. Express, 2014, 41717 CrossRef Google Scholar

[8] Chen K., Feng Y., Monticone F., Zhao J., Zhu B., Jiang T., Zhang L., Kim Y., Ding X., Zhang S., Alù A., Qiu C. W.. Adv. Mater., 2017, 291606422 CrossRef PubMed Google Scholar

[9] Xu H. X., Liu H., Ling X., Sun Y., Yuan F.. IEEE Trans. Antennas Propagat., 2017, 657378 CrossRef Google Scholar

[10] Xu H. X., Hu G., Han L., Jiang M., Huang Y., Li Y., Yang X., Ling X., Chen L., Zhao J., Qiu C. W.. Adv. Opt. Mater., 2018, 3341801479 CrossRef Google Scholar

[11] Xu H. X., Hu G., Li Y., Han L., Zhao J., Sun Y., Yuan F., Wang G. M., Jiang Z. H., Ling X., Cui T. J., Qiu C. W.. Light Sci. Appl., 2019, 83 CrossRef PubMed Google Scholar

[12] Dong S., Zhang Y., Guo H., Duan J., Guan F., He Q., Zhao H., Zhou L., Sun S.. Phys. Rev. Appl., 2018, 9014032 CrossRef Google Scholar

[13] Liu L., Zhang X., Kenney M., Su X., Xu N., Ouyang C., Shi Y., Han J., Zhang W., Zhang S.. Adv. Mater., 2014, 265031 CrossRef PubMed Google Scholar

[14] Wang Q., Zhang X., Xu Y., Tian Z., Gu J., Yue W., Zhang S., Han J., Zhang W.. Adv. Opt. Mater., 2015, 3779 CrossRef Google Scholar

[15] Cong L., Srivastava Y. K., Zhang H., Zhang X., Han J., Singh R.. Light Sci. Appl., 2018, 728 CrossRef PubMed Google Scholar

[16] Sun S., He Q., Xiao S., Xu Q., Li X., Zhou L.. Nat. Mater., 2012, 11426 CrossRef PubMed Google Scholar

[17] Wang S., Wu P. C., Su V. C., Lai Y. C., Hung Chu C., Chen J. W., Lu S. H., Chen J., Xu B., Kuan C. H., Li T., Zhu S., Tsai D. P.. Nat. Commun., 2017, 8187 CrossRef PubMed Google Scholar

[18] Hu G., Hong X., Wang K., Wu J., Xu H. X., Zhao W., Liu W., Zhang S., Garcia-Vidal F., Wang B., Lu P., Qiu C. W.. Nat. Photon., 2019, 13467 CrossRef Google Scholar

[19] Xie Y., Wang W., Chen H., Konneker A., Popa B. I., Cummer S. A.. Nat. Commun., 2014, 55553 CrossRef PubMed Google Scholar

[20] Tang H., Chen Z., Tang N., Li S., Shen Y., Peng Y., Zhu X., Zang J.. Adv. Funct. Mater., 2018, 281801127 CrossRef Google Scholar

[21] Cui T. J., Qi M. Q., Wan X., Zhao J., Cheng Q.. Light Sci. Appl., 2014, 3e218 CrossRef Google Scholar

[22] Wan X., Qi M. Q., Chen T. Y., Cui T. J.. Sci. Rep., 2016, 620663 CrossRef PubMed Google Scholar

[23] Liu S., Cui T. J., Xu Q., Bao D., Du L., Wan X., Tang W. X., Ouyang C., Zhou X. Y., Yuan H., Ma H. F., Jiang W. X., Han J., Zhang W., Cheng Q.. Light Sci. Appl., 2016, 5e16076 CrossRef PubMed Google Scholar

[24] Liu S., Cui T. J., Zhang L., Xu Q., Wang Q., Wan X., Gu J. Q., Tang W. X., Qing Qi M., Han J. G., Zhang W. L., Zhou X. Y., Cheng Q.. Adv. Sci., 2016, 31600156 CrossRef PubMed Google Scholar

[25] Wu R. Y., Shi C. B., Liu S., Wu W., Cui T. J.. Adv. Opt. Mater., 2018, 61701236 CrossRef Google Scholar

[26] Gao L. H., Cheng Q., Yang J., Ma S. J., Zhao J., Liu S., Chen H. B., He Q., Jiang W. X., Ma H. F., Wen Q. Y., Liang L. J., Jin B. B., Liu W. W., Zhou L., Yao J. Q., Wu P. H., Cui T. J.. Light Sci. Appl., 2015, 4e324 CrossRef Google Scholar

[27] Moccia M., Liu S., Wu R. Y., Castaldi G., Andreone A., Cui T. J., Galdi V.. Adv. Opt. Mater., 2017, 51700455 CrossRef Google Scholar

[28] Liu S., Noor A., Du L. L., Zhang L., Xu Q., Luan K., Wang T. Q., Tian Z., Tang W. X., Han J. G., Zhang W. L., Zhou X. Y., Cheng Q., Cui T. J.. ACS Photon., 2016, 31968 CrossRef Google Scholar

[29] Cui T. J., Wu R. Y., Wu W., Shi C. B., Li Y. B.. J. Phys. D-Appl. Phys., 2017, 50404002 CrossRef Google Scholar

[30] Ma Q., Shi C. B., Bai G. D., Chen T. Y., Noor A., Cui T. J.. Adv. Opt. Mater., 2017, 51700548 CrossRef Google Scholar

[31] Cui T. J., Liu S., Li L. L.. Light Sci. Appl., 2016, 5e16172 CrossRef PubMed Google Scholar

[32] Chen K., Cui L., Feng Y., Zhao J., Jiang T., Zhu B.. Opt. Express, 2017, 255571 CrossRef PubMed Google Scholar

[33] Wu R. Y., Zhang L., Bao L., Wu L. W., Ma Q., Bai G. D., Wu H. T., Cui T. J.. Adv. Opt. Mater., 2019, 71801429 CrossRef Google Scholar

[34] Li L., Cui T. J., Ji W., Liu S., Ding J., Wan X., Li Y. B., Jiang M., Qiu C. W., Zhang S.. Nat. Commun., 2017, 8197 CrossRef PubMed Google Scholar

[35] Chen L., Ma Q., Jing H. B., Cui H. Y., Liu Y., Cui T. J.. Phys. Rev. Appl., 2019, 11054051 CrossRef Google Scholar

[36] Cui T. J., Liu S., Zhang L.. J. Mater. Chem. C, 2017, 53644 CrossRef Google Scholar

[37] Cui T. J.. J. Opt., 2017, 19084004 CrossRef Google Scholar

[38] Cui T. J.. Natl. Sci. Rev., 2018, 5134 CrossRef Google Scholar

[39] T. J. Cui, and S. Liu, Opt. Photon. News, 27, 59 (2016). Google Scholar

[40] Yu S., Li L., Kou N.. Antennas Wirel. Propag. Lett., 2017, 161524 CrossRef Google Scholar

[41] B. Rahmati, H. R. Hassani, IEEE Trans. Antennas Propag. 63 174 (2014). Google Scholar

[42] Cheng H., Liu Z., Chen S., Tian J.. Adv. Mater., 2015, 275410 CrossRef PubMed Google Scholar

[43] Chen S., Zhang Y., Li Z., Cheng H., Tian J.. Adv. Opt. Mater., 2019, 71801477 CrossRef Google Scholar

[44] Wu R. Y., Li Y. B., Wu W., Shi C. B., Cui T. J.. IEEE Trans. Antennas Propagat., 2017, 653481 CrossRef Google Scholar

[45] Patel A. M., Grbic A.. IEEE Trans. Antennas Propagat., 2011, 592087 CrossRef Google Scholar

[46] Li Y. B., Wan X., Cai B. G., Cheng Q., Cui T. J.. Sci. Rep., 2015, 46921 CrossRef PubMed Google Scholar

[47] Li Y. B., Wu R. Y., Wu W., Shi C. B., Cheng Q., Cui T. J.. Adv. Mater. Technol., 2017, 21600196 CrossRef Google Scholar

  • Figure 1

    (Color online) (a) Schematic of the adopted multi-layer transmission-type structure. (b) Perspective view of the metallic patch with size Lp and the corresponding effective circuit model. (c) Perspective view and effective circuit model of the cross-slot layer, with constant length and width Ls=7.6 mm and Ws=1.425 mm, respectively. (d)-(f) Transmission amplitude and phase responses in the frequency domain of the single patch layer of states “0” and “1” and those of the slot layer.

  • Figure 2

    (Color online) (a) Transmission amplitude and (b) phase responses of the two coding particles. (c) Amplitude and phase responses of the two-patch structure for comparison; in this structure, the patch size of particle “0” is changed to 6.7 mm to ensure 1-bit phase shift, but the available working band is much narrower than that of the four-patch structure. (d) Variation trend of amplitude (red line) and phase responses (blue line) of the transmission coefficient for various oblique incident angles (θ) of particle “0” (dash line) and particle “1” (solid line). The stable phase difference (purple line) illustrates the insensitivity to oblique incidences.

  • Figure 3

    (Color online) Schematic diagrams of the electric field on the top and middle layers of coding particles “0” and “1” illuminated by y-polarized EM at three typical frequencies. (a) Middle and (b) top layers of coding particle “0”. (c) Middle and (d) top layers of coding particle “1”. (i) 8.1 GHz, (ii) 10 GHz, (iii) 12 GHz.

  • Figure 4

    (Color online) PPCM process for beam forming. The initial continual compensating pattern (a) is quantized to the 1-bit case (b) by fuzzy phase approximation. After convolution operation with the functional coding pattern (all “0” patterns here) (c), the final pattern (d) is formed on the aperture.

  • Figure 5

    (Color online) 3D and 2D simulated results of beam-forming performances at (a), (b) 8.5 GHz, (c), (d) 10.5 GHz, and (e), (f) 12.5 GHz.

  • Figure 6

    (Color online) Numerical simulation results of the beam-scanning performances in the u-v coordinate system (u=sinθcosφ, v=sinθsinφ) at (a), (b) 8.5 GHz, (c), (d) 10.5 GHz, and (e), (f) 12.5 GHz, indicating that the radiating direction varies gradually with frequencies.

  • Figure 7

    (Color online) PPCM process for beam-scanning. (a) The process of fuzzy phase approximation, (b) is the same as that for beam forming. After the convolution operation with functional coding pattern of 010101… (c), the final pattern (d) is formed on the aperture.

  • Figure 8

    (Color online) 3D and 2D simulated results of beam-scanning performances at (a), (b) 8.5 GHz, (c), (d) 10.5 GHz, and (e), (f) 12.5 GHz.

  • Figure 9

    (Color online) (a) Detailed sketch of the experimental setup. (b), (c) Photographs of the measurement setup for beam-forming and beam-scanning performances in the anechoic chamber. (d)-(f) Measured E-plane radiation patterns of the beam-forming performances at 8.5, 10.5, and 12.5 GHz, respectively. (g)-(i) Measured E-plane radiation patterns of the beam-scanning performances at 8.5, 10.5, and 12.5 GHz, respectively.

qqqq

Contact and support