logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 61 , Issue 3 : 030311(2018) https://doi.org/10.1007/s11433-017-9122-2

Realistic interpretation of quantum mechanics and encounter-delayed-choice experiment

More info
  • ReceivedSep 25, 2017
  • AcceptedOct 19, 2017
  • PublishedDec 13, 2017
PACS numbers

Abstract


Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grants No. 11474181), the National Basic Research Program of China (Grant No. 2011CB9216002), and the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University.


References

[1] Weizs?cker K. F.. Z. Physik, 1931, 70: 114-130 CrossRef ADS Google Scholar

[2] von Weizs?cker C. F.. Z. Physik, 1941, 118: 489-509 CrossRef ADS Google Scholar

[3] Wheeler J. A. in Mathematical Foundations of Quantum Theory, edited by A. R. Marlow (Academic Press, Cambridge, 1978), pp. 9?C48. Google Scholar

[4] Hellmuth T., Walther H., Zajonc A., Schleich W.. Phys. Rev. A, 1987, 35: 2532-2541 CrossRef ADS Google Scholar

[5] Lawson-Daku B. J., Asimov R., Gorceix O., Miniatura C., Robert J., Baudon J.. Phys. Rev. A, 1996, 54: 5042-5047 CrossRef ADS Google Scholar

[6] Kim Y. H., Yu R., Kulik S. P., Shih Y., Scully M. O.. Phys. Rev. Lett., 2000, 84: 1-5 CrossRef PubMed ADS Google Scholar

[7] Jacques V., Wu E., Grosshans F., Treussart F., Grangier P., Aspect A., Roch J. F.. Science, 2007, 315: 966-968 CrossRef PubMed ADS Google Scholar

[8] Jacques V., Wu E., Grosshans F., Treussart F., Grangier P., Aspect A., Roch J. F.. Phys. Rev. Lett., 2008, 100: 220402 CrossRef PubMed ADS arXiv Google Scholar

[9] Ma X., Zotter S., Kofler J., Ursin R., Jennewein T., Brukner , Zeilinger A.. Nat. Phys., 2012, 8: 480-485 CrossRef ADS arXiv Google Scholar

[10] Ionicioiu R., Terno D. R.. Phys. Rev. Lett., 2011, 107: 230406 CrossRef PubMed ADS arXiv Google Scholar

[11] Schirber M.. Physics, 2011, 4: 102 CrossRef ADS Google Scholar

[12] Roy S. S., Shukla A., Mahesh T. S.. Phys. Rev. A, 2012, 85: 022109 CrossRef ADS arXiv Google Scholar

[13] Auccaise R., Serra R. M., Filgueiras J. G., Sarthour R. S., Oliveira I. S., Céleri L. C.. Phys. Rev. A, 2012, 85: 032121 CrossRef ADS arXiv Google Scholar

[14] Peruzzo A., Shadbolt P., Brunner N., Popescu S., OBrien J. L.. Science, 2012, 338: 634-637 CrossRef PubMed ADS arXiv Google Scholar

[15] Kaiser F., Coudreau T., Milman P., Ostrowsky D. B., Tanzilli S.. Science, 2012, 338: 637-640 CrossRef PubMed ADS arXiv Google Scholar

[16] Tang J. S., Li Y. L., Xu X. Y., Xiang G. Y., Li C. F., Guo G. C.. Nat. Photon, 2012, 6: 602-606 CrossRef ADS Google Scholar

[17] Adesso G., Girolami D.. Nat. Photon, 2012, 6: 579-580 CrossRef ADS Google Scholar

[18] Céleri L. C., Gomes R. M., Ionicioiu R., Jennewein T., Mann R. B., Terno D. R.. Found Phys, 2014, 44: 576-587 CrossRef ADS arXiv Google Scholar

[19] Ionicioiu R., Jennewein T., Mann R. B., Terno D. R.. Nat. Commun., 2014, 5: 3997 CrossRef PubMed ADS arXiv Google Scholar

[20] Lundeen J. S., Sutherland B., Patel A., Stewart C., Bamber C.. Nature, 2011, 474: 188-191 CrossRef PubMed Google Scholar

[21] Kocsis S., Braverman B., Ravets S., Stevens M. J., Mirin R. P., Shalm L. K., Steinberg A. M.. Science, 2011, 332: 1170-1173 CrossRef PubMed ADS Google Scholar

[22] Schleich W. P., Freyberger M., Zubairy M. S.. Phys. Rev. A, 2013, 87: 014102 CrossRef ADS Google Scholar

[23] L. D. Landau, and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory in: Course of Theoretical Physics Vol. 3 3rd ed, 6 (Pergamon Press, Oxford, 1989). Google Scholar

[24] Cohen-Tannoudji, C., Diu, B. & Laloe, F. Quantum Mechanics Vol. 1, 19 (Wiley-Interscience, 2006). Google Scholar

[25] Mermin N. D.. Phys. Today, 2009, 62: 8-9 CrossRef ADS Google Scholar

[26] Long, G.L. The Realistic Interpretation of Quantum Mechanics. To be submitted. Google Scholar

[27] Gui-Lu L.. Commun. Theor. Phys., 2006, 45: 825-844 CrossRef ADS Google Scholar

[28] Gui-Lu L., Yang L.. Commun. Theor. Phys., 2008, 50: 1303-1306 CrossRef ADS arXiv Google Scholar

[29] Gui-Lu L., Yang L., Chuan W.. Commun. Theor. Phys., 2009, 51: 65-67 CrossRef ADS Google Scholar

[30] Gudder S.. Quantum Inf. Process., 2007, 6: 37-48 CrossRef Google Scholar

[31] Long G. L.. Quantum Inf. Process., 2007, 6: 49-54 CrossRef ADS Google Scholar

[32] Gui-Lu L., Yang L.. Commun. Theor. Phys., 2008, 50: 1303-1306 CrossRef ADS arXiv Google Scholar

[33] Long G. L.. Int. J. Theor. Phys., 2011, 50: 1305-1318 CrossRef ADS Google Scholar

[34] Li, C.Y., Wang, W.Y., Wang,C., Song, S.Y., and Long, G.L., Duality Quantum Information and Duality Quantum Communication. AIP Conf. Proc. 1327 158-165 (2011). Google Scholar

[35] Childs, A.M., and Wiebe, N., Hamiltonian simulation using linear combinations of unitary operations. QIC 12, 901 (2012). Google Scholar

[36] Zhou Z. Y., Zhu Z. H., Liu S. L., Li Y. H., Shi S., Ding D. S., Chen L. X., Gao W., Guo G. C., Shi B. S.. Sci. Bull., 2017, 62: 1185-1192 CrossRef Google Scholar

[37] Berry D. W., Childs A. M., Cleve R., Kothari R., Somma R. D.. Phys. Rev. Lett., 2015, 114: 090502 CrossRef PubMed ADS arXiv Google Scholar

[38] Wei S. J., Long G. L.. Quantum Inf. Process., 2016, 15: 1189-1212 CrossRef ADS arXiv Google Scholar

[39] Wei S. J., Ruan D., Long G. L.. Sci Rep, 2016, 6: 30727 CrossRef PubMed ADS Google Scholar

[40] Harrow A. W., Hassidim A., Lloyd S.. Phys. Rev. Lett., 2009, 103: 150502 CrossRef PubMed ADS arXiv Google Scholar

[41] Wei SJ, Zou ZR, Ruan D and Long GL, Realization of the algorithm for system of linear equations in duality quantum computing, Proceeding 2017 IEEE 85th Vehicular Technology Conference (VTC2017-Spring). Google Scholar

[42] Qiang X., Zhou X., Aungskunsiri K., Cable H., OBrien J. L.. Quantum Sci. Technol., 2017, 2: 045002 CrossRef Google Scholar

[43] Marshman R J, Lund A P, Rohde P P, et al. Passive quantum error correction of linear optics networks through error averaging. arXiv preprint,. arXiv Google Scholar

  • Figure 1

    (Color online) (a) An MZI with a tunable phase $\phi$ between its two arms. In the delayed-choice MZI, the decision whether or not to insert BS$_2$ is made after the photon has entered the MZI, but has not arrived at the intended position of BS$_2$ (the exit point). (b) In the EDC experiment, the insertion of BS$_{2}$ is made right at the encounter of the two sub-waves. As shown here, the front parts of the sub-waves have passed the exit point, whereas the back parts of the sub-waves have not passed through the exit point and are “closed" by BS$_2$. (c) Still in the EDC experiment, the two sub-waves leave the MZI and continue to move forward to D$_1$ and D$_2$. The front parts of the sub-waves retain their shape before they leave the MZI, but the back parts of the sub-waves are changed by the inserted BS$_2$. The back part of the up-going sub-wave vanishes due to destructive interference, whereas the right-going part of the sub-wave increases due to the constructive interference of BS$_2$. The interference patterns of the back parts of the sub-waves may vary according to their relative phases.

  • Figure 2

    (Color onlie) The detection probabilities, $P_{1}$ and $P_{2}$, as functions of the phase $\phi$ at fixed values of $P_{\text{p}}$. $P_{\text{p}}$ can be controlled by the BS$_2$ insertion instant of time, which divides the passing sub-waves into different ratios between particle-like and wave-like parts. When $P_\text{p}=1.0$, BS$_2$ is not inserted, no interference occurs and the photon exhibits particle-like nature. When $P_{\rm~p}=0$, BS$_2$ is inserted before the sub-waves arrive at the exit point, full interference occurs, and the photon shows a wave-like behavior. In between these two extremes, photons simultaneously exhibit a partial particle-like nature and partial wave-like nature as in the QDC case.

  • Figure 3

    (Color online) Experimental realization of the EDC experiment. SWL: single-wavelength laser. EOM: electro-optic modulator. ATT: optical attenuator. BS: beam splitter. D: single photon detector. Single photons are produced by attenuating the pulses generated by EOM$_1$ from a continuous light wave emitted from a $780$ nm laser with a linewidth of $600$ kHz. The input and output beam splitters are of 50/50 in transmission and reflection. The square waves TTL S$_{2}$ and S$_{3}$ signals apply to the EOM$_{2}$ and EOM$_{3}$, respectively, which serve as a controller for insertion the second beam splitter by guiding the sub-waves to different channels. The control signals S$_{2}$ and S$_{3}$ are in-phase, and $t_{\text{d}}$ is the time difference between S$_1$ and S$_{2}$, S$_{3}$.

  • Figure 4

    (Color online) Experimental results. (a) Black points represent ratio $R_{\text{w}}=N_1/(N_1+N_2)$ and red points are $R_{\rm~p}=N_3/(N_3+N_4)$, representing the wave-like behavior and particle-like behavior, respectively, in standard interpretation. (b) The total probability $P_{\text{w}}$ of interfering photon (black dots) and $P_{\rm~p}$ that of non-interfering photon (red dots).

qqqq

Contact and support