logo

SCIENCE CHINA Information Sciences, Volume 64 , Issue 10 : 200202(2021) https://doi.org/10.1007/s11432-021-3302-5

Robust SOF Stackelberg game for stochastic LPV systems

More info
  • ReceivedMar 29, 2021
  • AcceptedJul 8, 2021
  • PublishedSep 15, 2021

Abstract


References

[1] Yong J. A Leader-Follower Stochastic Linear Quadratic Differential Game. SIAM J Control Optim, 2002, 41: 1015-1041 CrossRef Google Scholar

[2] Shi L, Zhao Z, Lin Z. Robust semi-global leader-following practical consensus of a group of linear systems with imperfect actuators. Sci China Inf Sci, 2017, 60: 072201 CrossRef Google Scholar

[3] Xu J, Shi J, Zhang H. A leader-follower stochastic linear quadratic differential game with time delay. Sci China Inf Sci, 2018, 61: 112202 CrossRef Google Scholar

[4] Wang G, Wang Y, Zhang S. An asymmetric information mean?field type linear? ratic stochastic Stackelberg differential game with one leader and two followers. Optim Control Appl Meth, 2020, 41: 1034-1051 CrossRef Google Scholar

[5] Moon J, Ba?ar T. Linear quadratic mean field Stackelberg differential games. Automatica, 2018, 97: 200-213 CrossRef Google Scholar

[6] Kim K B, Tang A, Low S H. A stabilizing AQM based on virtual queue dynamics in supporting TCP with arbitrary delays. In: Proceedings of 42nd IEEE Conference on Decision and Control, Maui, 2003. 3665--3670. Google Scholar

[7] Shi J, Wang G, Xiong J. Linear-quadratic stochastic Stackelberg differential game with asymmetric information. Sci China Inf Sci, 2017, 60: 092202 CrossRef Google Scholar

[8] Li J, Ma G, Li T. A Stackelberg game approach for demand response management of multi-microgrids with overlapping sales areas. Sci China Inf Sci, 2019, 62: 212203 CrossRef Google Scholar

[9] Ku C C, Wu C I. Gain-Scheduled H Control for Linear Parameter Varying Stochastic Systems. J Dynamic Syst Measurement Control, 2015, 137 CrossRef Google Scholar

[10] Weiss Y, Allerhand L I, Arogeti S. Yaw stability control for a rear double-driven electric vehicle using LPV-H methods. Sci China Inf Sci, 2018, 61: 70206 CrossRef Google Scholar

[11] Mukaidani H. Gain-scheduled $H_\infty$ constraint Pareto optimal strategy for stochastic LPV systems with multiple decision makers. In: Proceedings of American Control Conference, Seattle, 2017. 1097--1102. Google Scholar

[12] Mukaidani H, Unno M, Xu H, et al. Gain-scheduled Nash games with $H_\infty$ constraint for stochastic LPV systems. In: Proceedings of the 20th IFAC World Congress, Toulouse, 2017. 1478--1483. Google Scholar

[13] Ahmed M, Mukaidani H, Shima T. H Constraint Pareto Optimal Strategy for Stochastic LPV Systems. Int Game Theor Rev, 2018, 20: 1750031 CrossRef Google Scholar

[14] Sagara M., Mukaidani H, Saravanakumar R, Xu H. Gain-scheduled robust Pareto static output feedback strategy for stochastic LPV systems, Proceedings of 58th Annual Conference of the Society of Instrument and Control Engineers of Japan, Hiroshima, 2019. 76--81. Google Scholar

[15] Mukaidani H, Xu H. Infinite Horizon Stackelberg Games With a Large Follower Population for Stochastic LPV Systems. IEEE Control Syst Lett, 2022, 6: 1034-1039 CrossRef Google Scholar

[16] Chen B S, Zhang W. Stochastic>tex<$H_2/H_infty~$>/tex<Control WithState-Dependent Noise. IEEE Trans Automat Contr, 2004, 49: 45-57 CrossRef Google Scholar

[17] Zhang W, Feng G. Nonlinear Stochastic $H_2/H_\infty$ Control with $(x,u,v)$-Dependent Noise: Infinite Horizon Case. IEEE Trans Automat Contr, 2008, 53: 1323-1328 CrossRef Google Scholar

[18] Reich S. Weak convergence theorems for nonexpansive mappings in Banach spaces. J Math Anal Appl, 1979, 67: 274-276 CrossRef Google Scholar

[19] Rami M A, Xun Yu Zhou M A. Linear matrix inequalities, Riccati equations, and indefinite stochastic linear quadratic controls. IEEE Trans Automat Contr, 2000, 45: 1131-1143 CrossRef Google Scholar

[20] Velegol D, Suhey P, Connolly J. Chemical Game Theory. Ind Eng Chem Res, 2018, 57: 13593-13607 CrossRef Google Scholar

[21] Boyd S, Vandenberghe L. Convex Optimization. Cambridge: Cambridge University Press, 2004. Google Scholar

[22] Ross D. Controller design for time lag systems via a quadratic criterion. IEEE Trans Automat Contr, 1971, 16: 664-672 CrossRef Google Scholar

[23] Mukaidani H, Saravanakumar R, Xu H. Stackelberg Strategy for Uncertain Markov Jump Delay Stochastic Systems. IEEE Control Syst Lett, 2020, 4: 1006-1011 CrossRef Google Scholar

qqqq

Contact and support