SCIENCE CHINA Information Sciences, Volume 64 , Issue 8 : 182313(2021) https://doi.org/10.1007/s11432-020-3085-6

Efficient coupling of evanescent waves in rectangular waveguides based on ultrathin planar capacitive metasurfaces

More info
  • ReceivedMay 17, 2020
  • AcceptedOct 13, 2020
  • PublishedJul 8, 2021



This work was supported in part by National Natural Science Foundation of China (Grant Nos. 62001065, 61871467, 61922018), Chongqing Natural Science Foundation (Grant No. cstc2019jcyjjqX0004), Open Project of Zhejiang Provincial Key Laboratory of Advanced Microelectronic Intelligent Systems and Applications, the Fundamental Research Funds for the Central Universities (Grant No. 2020CDJGFWDZ013), and Open Fund Project of Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing (Grant No. GXKL06190207). The authors would like to thank Prof. R. W. Ziolkowski from the University of Technology Sydney, Australia, for the helpful suggestions.


[1] Pozar D M. Microwave Engineering. 3rd ed. Hoboken: Wiley, 2005. Google Scholar

[2] Basavarajappa G, Mansour R R. A High-$Q$ Quadruple-Mode Rectangular Waveguide Resonator. IEEE Microw Wireless Compon Lett, 2019, 29: 324-326 CrossRef Google Scholar

[3] Guo Z C, Zhu L, Wong S W. Synthesis of Transversal Bandpass Filters on Stacked Rectangular H -Plane Waveguide Cavities. IEEE Trans Microwave Theor Techn, 2019, 67: 3651-3660 CrossRef ADS Google Scholar

[4] Yuan W, Liang X, Zhang L. Rectangular Grating Waveguide Slot Array Antenna for SATCOM Applications. IEEE Trans Antennas Propagat, 2019, 67: 3869-3880 CrossRef ADS Google Scholar

[5] Hrabar S, Bartolic J, Sipus Z. Waveguide Miniaturization Using Uniaxial Negative Permeability Metamaterial. IEEE Trans Antennas Propagat, 2005, 53: 110-119 CrossRef ADS Google Scholar

[6] Engheta N, Ziolkowski R W. Metamaterials: Physics and Engineering Explorations. Hoboken: John Wiley and Sons, 2006. Google Scholar

[7] Rajo-Iglesias E, Quevedo-Teruel , Kehn M N M. Multiband SRR Loaded Rectangular Waveguide. IEEE Trans Antennas Propagat, 2009, 57: 1571-1575 CrossRef ADS Google Scholar

[8] Estep N A, Askarpour A N, Alu A. Experimental Demonstration of Negative-Index Propagation in a Rectangular Waveguide Loaded With Complementary Split-Ring Resonators. Antennas Wirel Propag Lett, 2015, 14: 119-122 CrossRef ADS Google Scholar

[9] Malcolm Ng Mou Kehn M N M, Nannetti M N M, Cucini M N M. Analysis of dispersion in dipole-FSS loaded hard rectangular waveguide. IEEE Trans Antennas Propagat, 2006, 54: 2275-2282 CrossRef ADS Google Scholar

[10] He Y, Li Y, Zhu L. Waveguide Dispersion Tailoring by Using Embedded Impedance Surfaces. Phys Rev Appl, 2018, 10: 064024 CrossRef ADS Google Scholar

[11] Silveirinha M, Engheta N. Phys Rev Lett, 2006, 97: 157403 CrossRef ADS Google Scholar

[12] Silveirinha M G, Engheta N. Phys Rev B, 2007, 76: 245109 CrossRef ADS arXiv Google Scholar

[13] Edwards B, Alù A, Young M E. Experimental Verification of Epsilon-Near-Zero Metamaterial Coupling and Energy Squeezing Using a Microwave Waveguide. Phys Rev Lett, 2008, 100: 033903 CrossRef ADS Google Scholar

[14] Chang H C, Zaki K A. Evanescent-mode coupling of dual-mode rectangular waveguide filters. IEEE Trans Microwave Theor Techn, 1991, 39: 1307-1312 CrossRef ADS Google Scholar

[15] Sang-June Park , Reines I, Patel C. High-Q RF-MEMS 4-6-GHz Tunable Evanescent-Mode Cavity Filter. IEEE Trans Microwave Theor Techn, 2010, 58: 381-389 CrossRef ADS Google Scholar

[16] Jin J Y, Lin X Q, Xue Q. A Miniaturized Evanescent Mode Waveguide Filter Using RRRs. IEEE Trans Microwave Theor Techn, 2016, 64: 1989-1996 CrossRef ADS Google Scholar

[17] Sanchez-Escuderos D, Ruiz-Garnica J, Baquero-Escudero M. Evanescent-Mode Ridge-Waveguide Radiating Filters for Space Applications. IEEE Trans Antennas Propagat, 2019, 67: 6286-6297 CrossRef ADS Google Scholar

[18] Qiu C W, Jiang W, Cui T. Electromagnetic metasurfaces: from concept to applications. Sci Bull, 2019, 64: 791-792 CrossRef ADS Google Scholar

[19] Luo X G. Principles of electromagnetic waves in metasurfaces. Sci China-Phys Mech Astron, 2015, 58: 594201 CrossRef ADS Google Scholar

[20] Yang B, Liu T, Guo H. High-performance meta-devices based on multilayer meta-atoms: interplay between the number of layers and phase coverage. Sci Bull, 2019, 64: 823-835 CrossRef ADS Google Scholar

[21] Morini A, Rozzi T. On the definition of the generalized scattering matrix of a lossless multiport. IEEE Trans Microwave Theor Techn, 2001, 49: 160-165 CrossRef ADS Google Scholar

[22] Collin RE. Field Theory of Guided Waves. Hoboken: Wiley, 1991. Google Scholar

[23] Gomez-Diaz J S, Mosig J R, Perruisseau-Carrier J. Effect of Spatial Dispersion on Surface Waves Propagating Along Graphene Sheets. IEEE Trans Antennas Propagat, 2013, 61: 3589-3596 CrossRef ADS arXiv Google Scholar

[24] Pendry J B. Negative Refraction Makes a Perfect Lens. Phys Rev Lett, 2000, 85: 3966-3969 CrossRef ADS Google Scholar

[25] Wee W H, Pendry J B. Universal Evolution of Perfect Lenses. Phys Rev Lett, 2011, 106: 165503 CrossRef ADS Google Scholar

[26] Grbic A, Eleftheriades G V. Negative refraction, growing evanescent waves, and sub-diffraction imaging in loaded transmission-line metamaterials. IEEE Trans Microwave Theor Techn, 2003, 51: 2297-2305 CrossRef ADS Google Scholar

[27] Bialkowski M E. Analysis of a coaxial-to-waveguide adaptor including a discended probe and a tuning post. IEEE Trans Microwave Theor Techn, 1995, 43: 344-349 CrossRef ADS Google Scholar

[28] Balanis C A. Antenna Theory: Analysis and Design. 3rd ed. Hoboken: Wiley, 2005. Google Scholar

[29] Luukkonen O, Simovski C, Granet G. Simple and Accurate Analytical Model of Planar Grids and High-Impedance Surfaces Comprising Metal Strips or Patches. IEEE Trans Antennas Propagat, 2008, 56: 1624-1632 CrossRef ADS arXiv Google Scholar

[30] Costa F, Monorchio A, Manara G. An overview of equivalent circuit modeling techniques of frequency selective surfaces and metasurfaces. Appl Comput Electrom Soc J, 2014, 29: 960--976. Google Scholar

[31] Wei X C, Xu Y L, Meng N. A non-contact graphene surface scattering rate characterization method at microwave frequency by combining Raman spectroscopy and coaxial connectors measurement. Carbon, 2014, 77: 53-58 CrossRef Google Scholar


Contact and support