SCIENCE CHINA Information Sciences, Volume 62 , Issue 11 : 219105(2019) https://doi.org/10.1007/s11432-018-9827-9

Toward a K-means clustering approach to adaptive random testing for object-oriented software

More info
  • ReceivedAug 23, 2018
  • AcceptedFeb 25, 2019
  • PublishedSep 24, 2019


There is no abstract available for this article.


This work was supported in part by National Natural Science Foundation of China (Grant Nos. U1836116, 61762040, 61872167).


[1] Duran J W, Ntafos S C. An Evaluation of Random Testing. IIEEE Trans Software Eng, 1984, SE-10: 438-444 CrossRef Google Scholar

[2] Hamlet D, Taylor R N. Partition testing does not inspire confidence (program testing). IIEEE Trans Software Eng, 1990, 16: 1402-1411 CrossRef Google Scholar

[3] Chen T Y, Leung H, Mak I K. Adaptive random testing. In: Proceedings of Asian Computing Science Conference, Chiang Mai, 2005. 320--329. Google Scholar

[4] Chen T Y, Kuo F C, Merkel R G. Adaptive Random Testing: The ART of test case diversity. J Syst Software, 2010, 83: 60-66 CrossRef Google Scholar

[5] Ciupa I, Leitner A, Oriol M, et al. mboxARTOO: adaptive random testing for object-oriented software. In: Proceedings of International Conference on Software Engineering, Leipzig, 2008. 71--80. Google Scholar

[6] Chen J, Kuo F C, Chen T Y. A Similarity Metric for the Inputs of OO Programs and Its Application in Adaptive Random Testing. IEEE Trans Rel, 2017, 66: 373-402 CrossRef Google Scholar

[7] Chan K P, Chen T Y, Towey D. Forgetting test mboxcases In: Proceedings of Annual International Computer Software and Applications Conference, Chicago, 2006. 485--494. Google Scholar

[8] Hartigan J A, Wong M A. Algorithm AS 136: a K-means clustering mboxalgorithm J R Stat Soc C-Appl, 1979, 28: 100--108. Google Scholar

[9] Stankovic R S, Falkowski B J. The Haar wavelet transform: its status and achievements. Comput Electrical Eng, 2003, 29: 25-44 CrossRef Google Scholar