SCIENCE CHINA Information Sciences, Volume 62 , Issue 6 : 062406(2019) https://doi.org/10.1007/s11432-017-9472-x

Systematic calibration of drift diffusion model for InGaAs MOSFETs in quasi-ballistic regime

More info
  • ReceivedFeb 12, 2018
  • AcceptedMay 29, 2018
  • PublishedMar 1, 2019



This work was supported by National Natural Science Foundation of China (Grant Nos. 61674008, 61421005, 61404005).


[1] Deleonibus S. Looking into the future of Nanoelectronics in the Diversification Efficient Era. Sci China Inf Sci, 2016, 59: 061401 CrossRef Google Scholar

[2] Cheng K, Khakifirooz A. Fully depleted SOI (FDSOI) technology. Sci China Inf Sci, 2016, 59: 061402 CrossRef Google Scholar

[3] Natori K, Iwai H, Kakushima K. Anomalous degradation of low-field mobility in short-channel metal-oxide-semiconductor field-effect transistors. J Appl Phys, 2015, 118: 234502 CrossRef ADS Google Scholar

[4] Khandelwal S, Agarwal H, Kushwaha P. Unified Compact Model Covering Drift-Diffusion to Ballistic Carrier Transport. IEEE Electron Device Lett, 2016, 37: 134-137 CrossRef ADS Google Scholar

[5] Jin S, Pham A -T, Choi W, et al. Performance evaluation of FinFETs: from multisubband BTE to DD calibration. In: Proceedings of International Conference Simulation Semicond Processes Devices, 2016. 109--116. Google Scholar

[6] Iwai H, Natori K, Shiraishi K. Si nanowire FET and its modeling. Sci China Inf Sci, 2011, 54: 1004-1011 CrossRef Google Scholar

[7] Xie Q, Xu J. Recent research development of FinFETs. Sci China-Phys Mech Astron, 2016, 59: 127331 CrossRef ADS Google Scholar

[8] Takagi S, Takenaka M. Ge/III-V MOS device technologies for low power integrated systems. In: Proceedings of Solid State Device Research Conference (ESSDERC), 2015. 20--25. Google Scholar

[9] Vardi A, Zhao X, del Alamo J A. Quantum-size effects in sub 10-nm fin width InGaAs FinFETs. In: Proceedings of IEEE International Electron Devices Meeting, 2015. 1--4. Google Scholar

[10] Kim D -H, Kim T -W, Back R H, et al. High-performance III-V devices for future logic applications. In: Proceedings of IEEE International Electron Devices Meeting, 2014. 1--4. Google Scholar

[11] del Alamo J A. Nanometre-scale electronics with III-V compound semiconductors. Nature, 2011, 479: 317-323 CrossRef PubMed ADS Google Scholar

[12] Betti Beneventi G, Reggiani S, Gnudi A. A TCAD Low-Field Electron Mobility Model for Thin-Body InGaAs on InP MOSFETs Calibrated on Experimental Characteristics. IEEE Trans Electron Devices, 2015, 62: 3645-3652 CrossRef ADS Google Scholar

[13] Lu T, Du G, Liu X. A Finite Volume Method for the Multi Subband Boltzmann Equation with Realistic 2D Scattering in Double Gate MOSFETs. Commun Commut Phys, 2011, 10: 305-338 CrossRef ADS Google Scholar

[14] Di S, Zhao K, Lu T. Investigation of transient responses of nanoscale transistors by deterministic solution of the time-dependent BTE. J Comput Electron, 2016, 15: 770-777 CrossRef Google Scholar

[15] Di S, Shen L, Chang P. Performance comparison of Si, III-V double-gate n-type MOSFETs by deterministic Boltzmann transport equation solver. Jpn J Appl Phys, 2017, 56: 04CD08 CrossRef ADS Google Scholar

[16] Smirnov S. Physical modeling of electron transport in strained silicon and silicon-germanium. Dissertation for Ph.D. Degree. Fakultät für Elektrotechnik und Informationstechnik, von, Wien, Österreich, 2003. Google Scholar

[17] Esseni D. On the Modeling of Surface Roughness Limited Mobility in SOI MOSFETs and Its Correlation to the Transistor Effective Field. IEEE Trans Electron Devices, 2004, 51: 394-401 CrossRef ADS Google Scholar

[18] Fischetti M V. Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. I - Homogeneous transport. IEEE Trans Electron Devices, 1991, 38: 634-649 CrossRef ADS Google Scholar

[19] Ancona M G, Iafrate G J. Quantum correction to the equation of state of an electron gas in a semiconductor. Phys Rev B, 1989, 39: 9536-9540 CrossRef ADS Google Scholar

[20] Shur M S. Low ballistic mobility in submicron HEMTs. IEEE Electron Device Lett, 2002, 23: 511-513 CrossRef ADS Google Scholar

[21] Lundstrom M. Elementary scattering theory of the Si MOSFET. IEEE Electron Device Lett, 1997, 18: 361-363 CrossRef ADS Google Scholar

[22] Rahman A, Lundstrom M S. A compact scattering model for the nanoscale double-gate MOSFET. IEEE Trans Electron Devices, 2002, 49: 481-489 CrossRef ADS Google Scholar

[23] Canali C, Majni G, Minder R. Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature. IEEE Trans Electron Devices, 1975, 22: 1045-1047 CrossRef ADS Google Scholar

[24] Barnes J J, Lomax R J, Haddad G I. Finite-element simulation of GaAs MESFET's with lateral doping profiles and submicron gates. IEEE Trans Electron Devices, 1976, 23: 1042-1048 CrossRef ADS Google Scholar

  • Figure 1

    (Color online) Schematic of the simulated device structure.

  • Figure 2

    (Color online) Flow chart of the calibration procedure. The procedure consists of three parts, electrostatic characteristics, low field mobility, and high field saturation.

  • Figure 3

    (Color online) Relative error of the calibrated DG model vs. $\gamma$ parameter under various gate voltages. The drain voltage is set to be zero. The relative error is calculated using the carrier density at the middle of the channel.

  • Figure 4

    (Color online) Calibration results of the DG model with different gate voltages and $V_D$=0. The parameter barrier is set to 0.03 to compensate the carrier density variation caused by the DG model.

  • Figure 5

    (Color online) Calibration results of the electrostatic characteristics. The relationship between the carrier density in the middle of the channel and the gate voltage is shown in logarithm and linear coordinates, respectively.

  • Figure 6

    (Color online) Transfer characteristic curve of the device simulated using calibrated low field mobility model and Enormal model. The inset shows the velocity calibration under a small $V_D$.

  • Figure 7

    (Color online) Velocity distribution simulated using TCAD and the BTE solver with $V_D=0.05$ and 0.6 V. A high field saturation model is not involved in the TCAD simulation.

  • Figure 8

    (Color online) The relative error of the injection velocity with various parameters $\beta$$_0$.

  • Figure 9

    (Color online) Calibration of velocity along the channel under $V_G=0.6$ V. The injection velocity is the key point.

  • Figure 10

    (Color online) Calibration results of output characteristics curves with calibrated high field saturation model.

  • Figure 11

    (Color online) (a) Transfer characteristic curve in logarithm and linear coordinates and (b) relative error of the current under various biases after the Enormal model is involved.

  • Table 1   Structural parameters of the sample
    Parameter Value
    Channel length 20 nm
    S/D length 10 nm
    Effective oxide thickness (EOT) 1 nm
    Film thickness 5 nm
    Channel doping 10$^{17}$ cm$^{-3}$
    S/D doping 5$\times$10$^{19}$ cm$^{-3}$
  • Table 2   Relative error of every step of the calibration procedure
    Procedure Relative error
    $V_G=0.4$ V $V_G=0.5$ V $V_G=0.6$ V
    DG model 44.2% 11.7% 19.1 %
    Low field $v_{\rm~inj}$ 0.69% and 0.012% with $V_D=0.1$ and 0.5 mV
    Low field current 51.2% 18.9% 10.1 %
    Low field Enormal 39% 6.9% 3.1 %
    High field $v_{\rm~inj}$ 2.7% with $V_D=0.6$ V
    High field current 43.7% 12.5% 12.3 %
    High field Enormal 29.4% 1.2% 19.7 %