This work was supported by National Natural Science Foundation of China (Grant Nos. 61233004, 61590924, 61521063).
[1] Kalman R E, Ho Y C, Narenda K S. Controllability of linear dynamical systems. Contrib Diff Eqs, 1963, 1: 189--213. Google Scholar
[2] Rosenbrock H H. State-Space and Multivariable Theory. New York: Wiley, 1970. Google Scholar
[3] Hautus M L J. Controllability and observability conditions of linear autonomous systems. Nederl Akad Wet Proc Ser A, 1969, 72: 443--448. Google Scholar
[4] Ching-Tai Lin . Structural controllability. IEEE Trans Automat Contr, 1974, 19: 201-208 CrossRef Google Scholar
[5] Shields R, Pearson J. Structural controllability of multiinput linear systems. IEEE Trans Automat Contr, 1976, 21: 203-212 CrossRef Google Scholar
[6] Mayeda H. On structural controllability theorem. IEEE Trans Automat Contr, 1981, 26: 795-798 CrossRef Google Scholar
[7] Wang L, Jiang F C, Xie G M. Controllability of multi-agent systems based on agreement protocols. Sci China Ser F-Inf Sci, 2009, 52: 2074-2088 CrossRef Google Scholar
[8] Guan Y, Wang L. Structural controllability of multi-agent systems with absolute protocol under fixed and switching topologies. Sci China Inf Sci, 2017, 60: 092203 CrossRef Google Scholar
[9] Liu Y Y, Slotine J J, Barabási A L. Controllability of complex networks. Nature, 2011, 473: 167-173 CrossRef PubMed ADS Google Scholar
[10] Mu J, Li S, Wu J. On the structural controllability of distributed systems with local structure changes. Sci China Inf Sci, 2018, 61: 052201 CrossRef Google Scholar
[11] Mayeda H, Yamada T. Strong Structural Controllability. SIAM J Control Optim, 1979, 17: 123-138 CrossRef Google Scholar
[12] Hartung C, Reissig G, Svaricek F. Characterization of strong structural controllability of uncertain linear time-varying discrete-time systems. In: Proceedings of the 51st IEEE Conference on Decision and Control, Maui, 2012. 2189--2194. Google Scholar
[13] Hartung C, Reissig G, Svaricek F. Sufficient conditions for strong structural controllability of uncertain linear time-varying systems. In: Proceedings of American Control Conference, Washington, 2013. 5895--5900. Google Scholar
[14] Hartung C, Reissig G, Svaricek F. Necessary conditions for structural and strong structural controllability of linear time-varying systems. In: Proceedings of European Control Conference, Zurich, 2013. 1335--1340. Google Scholar
[15] Reissig G, Hartung C, Svaricek F. Strong Structural Controllability and Observability of Linear Time-Varying Systems. IEEE Trans Automat Contr, 2014, 59: 3087-3092 CrossRef Google Scholar
[16] Rugh W J. Linear System Theory. 2nd ed. Englewood Cliffs: Prentice Hall, 1996. Google Scholar
[17] Kalman R E. On the general theory of control systems. IEEE Trans Automat Contr, 1959, 4: 481--492. Google Scholar
[18] Sontag E D. Mathematical Control Theory. 2nd ed. New York: Springer, 1991. Google Scholar
[19] Liu X, Lin H, Chen B M. Graph-theoretic characterisations of structural controllability for multi-agent system with switching topology. Int J Control, 2013, 86: 222-231 CrossRef Google Scholar
Figure 1
Run time of Algorithm
$~\mathbf{Input}~$ |
$~U~=~\{~u_1,~\ldots~,~u_n~\},~V~=~\{~v_1,~\ldots~,~v_{n+m}~\}~$, |
$~N(u_1),\ldots,N(u_n),N(v_1),\ldots,N(v_{n+m})~$, |
$~\mathbf{Initialization}~$ |
$t~=~1$, |
$W~=~\lbrace~v_{n+1},\ldots,v_{n+m}~\rbrace$, |
$\tilde~W~=~W$, |
$\tilde~U~=~U$, |
$\tilde~N(x)~=~N(x)$, |
$~\mathbf{Main~~Algorithm}~$ |
$x~=~$ Null, |
|
|
$x~=~w$, |
$y~=~u_{i_t}$, |
Break, |
|
|
|
Return “False", |
Break, |
|
$t~=~t+1$, |
|
$~\tilde~N(z)~=~\tilde~N(z)~-~\lbrace~y~\rbrace$, |
|
$~\tilde~U~=~\tilde~U~-~\lbrace~y~\rbrace$, |
$~~W~=~~W~\cup~\lbrace~y~\rbrace~-~\lbrace~x~\rbrace$, |
$~\tilde~W~=~\tilde~W~\cup~\lbrace~y~\rbrace$, |
Delete $~\tilde~N(y)$, |
Return “True", |