logo

SCIENCE CHINA Information Sciences, Volume 61 , Issue 9 : 092201(2018) https://doi.org/10.1007/s11432-017-9135-4

Observability of Boolean control networks

More info
  • ReceivedMar 16, 2017
  • AcceptedMay 16, 2017
  • PublishedOct 26, 2017

Abstract


References

[1] Kauffman S A. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol, 1969, 22: 437-467 CrossRef Google Scholar

[2] Cheng D Z, Qi H S, Li Z Q. Analysis and Control of Boolean Networks: A Semi-tensor Product Approach. Berlin: Springer, 2011. Google Scholar

[3] Chen H, Liang J, Wang Z. Pinning controllability of autonomous Boolean control networks. Sci China Inf Sci, 2016, 59: 070107 CrossRef Google Scholar

[4] Liu Y, Chen H, Wu B. Controllability of Boolean control networks with impulsive effects and forbidden states. Math Meth Appl Sci, 2014, 37: 1-9 CrossRef ADS Google Scholar

[5] Lu J, Zhong J, Ho D W C. On Controllability of Delayed Boolean Control Networks. SIAM J Control Optim, 2016, 54: 475-494 CrossRef Google Scholar

[6] Lu J, Zhong J, Huang C. On Pinning Controllability of Boolean Control Networks. IEEE Trans Automat Contr, 2016, 61: 1658-1663 CrossRef Google Scholar

[7] Cheng D, Li Z, Qi H. Realization of Boolean control networks. Automatica, 2010, 46: 62-69 CrossRef Google Scholar

[8] Fornasini E, Valcher M E. Observability, Reconstructibility and State Observers of Boolean Control Networks. IEEE Trans Automat Contr, 2013, 58: 1390-1401 CrossRef Google Scholar

[9] Laschov D, Margaliot M. A Maximum Principle for Single-Input Boolean Control Networks. IEEE Trans Automat Contr, 2011, 56: 913-917 CrossRef Google Scholar

[10] Laschov D, Margaliot M. Minimum-time control of Boolean networks. SIAM J Control Opt, 2012, 51: 2869--2892. Google Scholar

[11] Zou Y, Zhu J. System decomposition with respect to inputs for Boolean control networks. Automatica, 2014, 50: 1304-1309 CrossRef Google Scholar

[12] Zou Y, Zhu J. Kalman decomposition for Boolean control networks. Automatica, 2015, 54: 65-71 CrossRef Google Scholar

[13] Li F. Pinning Control Design for the Stabilization of Boolean Networks. IEEE Trans Neural Netw Learning Syst, 2016, 27: 1585-1590 CrossRef Google Scholar

[14] Li R, Yang M, Chu T. State Feedback Stabilization for Boolean Control Networks. IEEE Trans Automat Contr, 2013, 58: 1853-1857 CrossRef Google Scholar

[15] Li R, Yang M, Chu T. State feedback stabilization for probabilistic Boolean networks. Automatica, 2014, 50: 1272-1278 CrossRef Google Scholar

[16] Liu Y, Sun L, Lu J. Feedback Controller Design for the Synchronization of Boolean Control Networks.. IEEE Trans Neural Netw Learning Syst, 2016, 27: 1991-1996 CrossRef PubMed Google Scholar

[17] Zhong J, Lu J, Liu Y. Synchronization in an array of output-coupled Boolean networks with time delay.. IEEE Trans Neural Netw Learning Syst, 2014, 25: 2288-2294 CrossRef PubMed Google Scholar

[18] Liu Y, Li B, Chen H. Function perturbations on singular Boolean networks. Automatica, 2017, 84: 36-42 CrossRef Google Scholar

[19] Li H, Xie L, Wang Y. On robust control invariance of Boolean control networks. Automatica, 2016, 68: 392-396 CrossRef Google Scholar

[20] Fornasini E, Valcher M E. On the periodic trajectories of Boolean control networks. Automatica, 2013, 49: 1506-1509 CrossRef Google Scholar

[21] Fornasini E, Valcher M E. Fault Detection Analysis of Boolean Control Networks. IEEE Trans Automat Contr, 2015, 60: 2734-2739 CrossRef Google Scholar

[22] Liu Y, Chen H, Lu J. Controllability of probabilistic Boolean control networks based on transition probability matrices. Automatica, 2015, 52: 340-345 CrossRef Google Scholar

[23] Li H, Wang Y. Controllability Analysis and Control Design for Switched Boolean Networks with State and Input Constraints. SIAM J Control Optim, 2015, 53: 2955-2979 CrossRef Google Scholar

[24] Li H, Wang Y, Xie L. Output tracking control of Boolean control networks via state feedback: Constant reference signal case. Automatica, 2015, 59: 54-59 CrossRef Google Scholar

[25] Zhao Y, Cheng D Z. On controllability and stabilizability of probabilistic Boolean control networks. Sci China Inf Sci, 2014, 57: 012202. Google Scholar

[26] Cheng D Z. Semi-tensor product of matrices and its application to morgen's problem. Sci China Ser F-Inf Sci, 2001, 44: 195--212. Google Scholar

[27] Cheng D, Xu T, Qi H. Evolutionarily Stable Strategy of Networked Evolutionary Games. IEEE Trans Neural Netw Learning Syst, 2014, 25: 1335-1345 CrossRef Google Scholar

[28] Guo P, Wang Y, Li H. Stable degree analysis for strategy profiles of evolutionary networked games. Sci China Inf Sci, 2016, 59: 052204 CrossRef Google Scholar

[29] Lu J Q, Li H T, Liu Y, et al. A survey on semi-tensor product method with its applications in logical networks and other finite-valued systems. IET Control Theory Appl, 2017, 13: 2040--2047. Google Scholar

[30] Cheng D, Qi H. Controllability and observability of Boolean control networks. Automatica, 2009, 45: 1659-1667 CrossRef Google Scholar

[31] Cheng D, Zhao Y. Identification of Boolean control networks. Automatica, 2011, 47: 702-710 CrossRef Google Scholar

[32] Zhao Y, Qi H, Cheng D. Input-state incidence matrix of Boolean control networks and its applications. Syst Control Lett, 2010, 59: 767-774 CrossRef Google Scholar

[33] Zhang K, Zhang L. Observability of Boolean Control Networks: A Unified Approach Based on Finite Automata. IEEE Trans Automat Contr, 2016, 61: 2733-2738 CrossRef Google Scholar

[34] Cheng D, Qi H, Liu T. A note on observability of Boolean control networks. Syst Control Lett, 2016, 87: 76-82 CrossRef Google Scholar

[35] Laschov D, Margaliot M. Controllability of Boolean control networks via the Perron-Frobenius theory. Automatica, 2012, 48: 1218-1223 CrossRef Google Scholar