SCIENCE CHINA Information Sciences, Volume 60 , Issue 4 : 042402(2017) https://doi.org/10.1007/s11432-015-0931-8

An electrical-coupling-suppressing MEMS gyroscope with feed-forward coupling compensation and scalable fuzzy control

More info
  • ReceivedJun 29, 2016
  • AcceptedAug 24, 2016
  • PublishedJan 10, 2017




This work was partially supported by National Natural Science Foundation of China (Grant Nos. 61434003, 51505089).


[1] Lee A, Ko H, Cho D I D, et al. Non-ideal behavior of a driving resonator loop in a vibratory capacitive microgyroscope. Microelectronics J, 2008, 39: 1-6 CrossRef Google Scholar

[2] Acar C, Shkel A M. An approach for increasing drive-mode bandwidth of MEMS vibratory gyroscopes. J Microelectromech Syst, 2005, 14: 520-528 CrossRef Google Scholar

[3] Alper S E, Akin T. A symmetric surface micro-machined gyroscope with decoupled oscillation modes. Sensors Actuat A Phys, 2002, 97--98: 347-358 CrossRef Google Scholar

[4] Weinberg M S, Kourepenis A. Error sources in in-plane silicon tuning-fork MEMS gyroscopes. J Microelectromech Syst, 2006, 15: 479-491 CrossRef Google Scholar

[5] Saukoski M, Aaltonen L, Halonen K A I, et al. Zero-rate output and quadrature compensation in vibratory MEMS gyroscopes. IEEE Sensors J, 2007, 7: 1639-1652 CrossRef Google Scholar

[6] Guo Z Y, Liu X S, Yang Z C, et al. Electrostatic isolation structure for linearity improvement of a lateral-axis tuning fork gyroscope. In: Proceedings of IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Hong Kong, 2010. 264--267. Google Scholar

[7] Cagdaser B, Jog A, Last M, et al. Capacitive sense feedback control for MEMS beam steering mirrors. In: Proceedings of Solid-State Sensor and Actuator Workshop, Hilton Head Island, 2004. 348--351. Google Scholar

[8] Acar C, Shkel A M. Structurally decoupled micromachined gyroscopes with post-release capacitance enhancement. J Micromech Microeng, 2005, 15: 1092-1101 CrossRef Google Scholar

[9] Cui J, Guo Z Y, Yang Z C, et al. Electrical coupling suppressing for a microgyroscope using ascending frequency drive with 2-DOF PID controller. In: Proceedings of the 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), Beijing, 2011. 2002--2005. Google Scholar

[10] Cui J, Guo Z Y, Yang Z C, et al. Electrical coupling suppression and transient response improvement for a microgyroscope using ascending frequency drive with a 2-DOF PID controller. J Micromech Microeng, 2011, 21: 095020-1101 CrossRef Google Scholar

[11] Trusov A A, Prikhodko I P, Rozelle D M, et al. 1 PPM precision self calibration of scale factor in MEMS Coriolis vibratory gyroscopes. In: Proceedings of Transducers & Eurosensors XXVII: the 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), Barcelona, 2013. 2531--2534. Google Scholar

[12] Woo J K, Cho J Y, Boyd C, et al. Whole-angle-mode micromachined fused-silica birdbath resonator gyroscope (WA-BRG). In: Proceedings of the 27th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), San Francisco, 2014. 20--23. Google Scholar

[13] Senkal D, Ng E J, Hong V, et al. Parametric drive of a toroidal MEMS rate integrating gyroscope demonstrating $<$20 ppm scale factor stability. In: Proceedings of the 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, 2015. 29--32. Google Scholar

[14] Xiao Q J, Li S Y, Chen W Y, et al. Fuzzy tuning PI control for initial levitation of micromachined electrostatically levitated gyroscope. Electron Lett, 2009, 45: 818-819 CrossRef Google Scholar

[15] Fei J T, Xin M Y. An adaptive fuzzy sliding mode controller for MEMS triaxial gyroscope with angular velocity estimation. Nonlinear Dyn, 2012, 70: 97-109 CrossRef Google Scholar

[16] He C H, Zhao Q C, Huang Q W, et al. A MEMS vibratory gyroscope with real-time mode-matching and robust control for the sense mode. IEEE Sensors J, 2015, 15: 2069-2077 CrossRef Google Scholar

[17] Ding H T, Yang Z C, Zhang M L, et al. Experimental study on the footing effect for SOG structures using DRIE. J Semicond, 2008, 29: 1088-1093 Google Scholar

[18] Ding H T, Liu X S, Lin L T, et al. A High-resolution silicon-on-glass axis gyroscope operating at atmospheric pressure. IEEE Sensors J, 2010, 10: 1066-1074 CrossRef Google Scholar

[19] Liu Y X, He C H, Liu D C, et al. Digital closed-loop driver design of micromechanical gyroscopes based on coordinated rotation digital computer algorithm. In: Proceedings of the 8th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Suzhou, 2013. 1145--1148. Google Scholar

[20] Liu D C, He C H, Zhao Q C, et al. Digital signal processing for a micromachined vibratory gyroscope based on a three dimensional adaptive filter demodulator. Measurement, 2014, 50: 198-202 CrossRef Google Scholar

[21] Li Z P, Fan Q J, Chang L M, et al. Improved wavelet threshold denoising method for MEMS gyroscope. In: Proceedings of the 11th IEEE International Conference on Control & Automation (ICCA), Taichung, 2014. 530--534. Google Scholar

[22] Stebler Y, Guerrier S, Skaloud J, et al. Generalized method of wavelet moments for inertial navigation filter design. IEEE Trans Aerospace Electron Syst, 2014, 50: 2269-2283 CrossRef Google Scholar