the National Natural Science Foundation of China(Grant,Nos.,91751202,41521064,&,41506154)
This work was supported by the National Natural Science Foundation of China (Grant Nos. 41730530, 91751202, 41476112) and the National Key Research and Development Program of China (Grant No. 2016YFA0601303).
[1] Amaral G R S, Dias G M, Wellington-Oguri M, Chimetto L, Campeão M E, Thompson F L, Thompson C C. Genotype to phenotype: Identification of diagnostic vibrio phenotypes using whole genome sequences. Int J Syst Evol Microbiol, 2014, 64: 357-365 CrossRef PubMed Google Scholar
[2] Amin A K M R, Feng G, Al-saari N, Meirelles P M, Yamazaki Y, Mino S, Thompson F L, Sawabe T, Sawabe T. The first temporal and spatial assessment of vibrio diversity of the surrounding seawater of coral reefs in ishigaki, Japan. Front Microbiol, 2016, 7: 1185 CrossRef Google Scholar
[3]
Araki T, Hayakawa M, Lu Z, Karita S, Morishita T. 1998. Purification and characterization of agarases from a marine bacterium,
[4]
Araki
T,
Hashikawa
S,
Morishita
T.
Cloning, sequencing, and expression in
[5] Arnosti C. Patterns of microbially driven carbon cycling in the ocean: Links between extracellular enzymes and microbial communities. Adv Oceanogr, 2014, 2014: 1-12 CrossRef Google Scholar
[6]
Austin
B,
Zhang
X H.
[7]
Baker-Austin
C,
Trinanes
J,
Gonzalez-Escalona
N,
Martinez-Urtaza
J.
Non-cholera
[8] Azam F, Malfatti F. Microbial structuring of marine ecosystems. Nat Rev Microbiol, 2007, 5: 782-791 CrossRef PubMed Google Scholar
[9]
Beijerinck M W. 1889. Le
[10] Benner R. 2002. Chemical composition and reactivity. In: Hansell D A, Carlson C A, eds. Biogeochemistry of Marine Dissolved Organic Matter. New York : Academic. 59–90. Google Scholar
[11]
Bruhn
J B,
Nielsen
K F,
Hjelm
M,
Hansen
M,
Bresciani
J,
Schulz
S,
Gram
L.
Ecology, inhibitory activity, and morphogenesis of a marine antagonistic bacterium belonging to the
[12] Chan K, Woo M, Lo K, French G. 1986. Occurrence and distribution of halophilic vibrios in subtropical coastal waters of Hong Kong. Appl Environ Microbiol, 52: 1407–1411. Google Scholar
[13]
Chao Y, Wang S, Wu S, Wei J, Chen H. 2017. Cloning and characterization of an alginate lyase from marine
[14] Chi W J, Chang Y K, Hong S K. Agar degradation by microorganisms and agar-degrading enzymes. Appl Microbiol Biotechnol, 2012, 94: 917-930 CrossRef PubMed Google Scholar
[15]
Chimetto Tonon
L A,
Thompson
J R,
Moreira
A P B,
Garcia
G D,
Penn
K,
Lim
R,
Berlinck
R G S,
Thompson
C C,
Thompson
F L.
Quantitative detection of active vibrios associated with white plague disease in
[16]
Connell T D, Metzger D J, Lynch J, Folster J P. 1998. Endochitinase is transported to the extracellular milieu by the eps-encoded general secretory pathway of
[17]
Davis
B J K,
Jacobs
J M,
Davis
M F,
Schwab
K J,
DePaola
A,
Curriero
F C.
Environmental determinants of
[18]
Doi
H,
Chinen
A,
Fukuda
H,
Usuda
Y.
[19]
Doi
H,
Tokura
Y,
Mori
Y,
Mori
K,
Asakura
Y,
Usuda
Y,
Fukuda
H,
Chinen
A.
Identification of enzymes responsible for extracellular alginate depolymerization and alginate metabolism in
[20]
Dong
J,
Hashikawa
S,
Konishi
T,
Tamaru
Y,
Araki
T.
Cloning of the novel gene encoding-agarase C from a marine bacterium,
[21]
Dong
J,
Tamaru
Y,
Araki
T.
Molecular cloning, expression, and characterization of a β-agarase gene,
[22]
Eilers
H,
Pernthaler
J,
Glockner
F O,
Amann
R.
Culturability and
[23]
Eiler
A,
Johansson
M,
Bertilsson
S.
Environmental influences on
[24]
Farmer J J, Janda J M, Brenner F W, Cameron D N, Birkhead K M. 2005. Genus I.
[25] Feller G, Narinx E, Arpigny J L, Zekhnini Z, Swings J, Gerday C. Temperature dependence of growth, enzyme secretion and activity of psychrophilic Antarctic bacteria. Appl Microbiol Biotechnol, 1994, 41: 477-479 CrossRef Google Scholar
[26]
Fu
W,
Han
B,
Duan
D,
Liu
W,
Wang
C.
Purification and characterization of agarases from a marine bacterium
[27] Fujino T, Okuno Y, Nakada D, Aoyama A, Fukai K, Mukai T, Ueha T. 1951. On the bacteriological examination of shirasu food poisoning (in Japanese). J Jpn Assoc Inf Dis, 25: 11. Google Scholar
[28]
Gao
Z,
Ruan
L,
Chen
X,
Zhang
Y,
Xu
X.
A novel salt-tolerant endo-β-1,4-glucanase Cel5A in
[29]
Gao
Z M,
Xiao
J,
Wang
X N,
Ruan
L W,
Chen
X L,
Zhang
Y Z.
[30] Gilbert J A, Dupont C L. Microbial metagenomics: Beyond the genome. Annu Rev Mar Sci, 2011, 3: 347-371 CrossRef PubMed ADS Google Scholar
[31] Gilbert J A, Steele J A, Caporaso J G, Steinbrück L, Reeder J, Temperton B, Huse S, McHardy A C, Knight R, Joint I, Somerfield P, Fuhrman J A, Field D. Defining seasonal marine microbial community dynamics. ISME J, 2012, 6: 298-308 CrossRef PubMed Google Scholar
[32]
Girard
L,
Peuchet
S,
Servais
P,
Henry
A,
Charni-Ben-Tabassi
N,
Baudart
J.
Spatiotemporal dynamics of total viable
[33] Gomez-Gil B, Thompson C C, Matsumura Y, Sawabe T, Iida T, Christen R. 2014. Family Vibrionaceae (Chapter 225). In: Rosenberg E, DeLong E, Thompson F L, Lory S, Stackebrandt E, eds. The Prokaryotes. 4th ed. New York: Springer. 88. Google Scholar
[34]
Grimes
D J,
Johnson
C N,
Dillon
K S,
Flowers
A R,
Noriea
N F,
Berutti
T.
What genomic sequence information has revealed about
[35]
Guerinot
M L,
West
P A,
Lee
J V,
Colwell
R R.
[36] Hamdan L, Fulmer P. Effects of COREXIT® EC9500A on bacteria from a beach oiled by the Deepwater Horizon spill. Aquat Microb Ecol, 2011, 63: 101-109 CrossRef Google Scholar
[37]
Hickey
M E,
Lee
J L.
A comprehensive review of
[38]
Honda
Y,
Taniguchi
H,
Kitaoka
M.
A reducing-end-acting chitinase from
[39] Itoi S, Kanomata Y, Koyama Y, Kadokura K, Uchida S, Nishio T, Oku T, Sugita H. Identification of a novel endochitinase from a marine bacterium Vibrio proteolyticus strain No. 442. BBA-Proteins Proteom, 2007, 1774: 1099-1107 CrossRef PubMed Google Scholar
[40]
Joseph
S W,
Colwell
R R,
Kaper
J B.
[41]
Kadokura
K,
Rokutani
A,
Yamamoto
M,
Ikegami
T,
Sugita
H,
Itoi
S,
Hakamata
W,
Oku
T,
Nishio
T.
Purification and characterization of
[42] Kauffman K M, Hussain F A, Yang J, Arevalo P, Brown J M, Chang W K, VanInsberghe D, Elsherbini J, Sharma R S, Cutler M B, Kelly L, Polz M F. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature, 2018, 554: 118-122 CrossRef PubMed ADS Google Scholar
[43]
Keyhani
N O,
Roseman
S.
The chitin catabolic cascade in the Marine Bacterium
[44] Kirchman D, White J. Hydrolysis and mineralization of chitin in the Delaware Estuary. Aquat Microb Ecol, 1999, 18: 187-196 CrossRef Google Scholar
[45]
Kiyohara
M,
Sakaguchi
K,
Yamaguchi
K,
Araki
T,
Nakamura
T,
Ito
M.
Molecular cloning and characterization of a novel β-1,3-xylanase possessing two putative carbohydrate-binding modules from a marine bacterium
[46]
Kopprio
G A,
Streitenberger
M E,
Okuno
K,
Baldini
M,
Biancalana
F,
Fricke
A,
Martínez
A,
Neogi
S B,
Koch
B P,
Yamasaki
S,
Lara
R J.
Biogeochemical and hydrological drivers of the dynamics of
[47] Lapota D, Galt C, Losee J R, Huddell H D, Orzech J K, Nealson K H. Observations and measurements of planktonic bioluminescence in and around a milky sea. J Exp Mar Biol Ecol, 1988, 119: 55-81 CrossRef Google Scholar
[48] Lehmann K B, Neumann R. 1896. Atlas und Grundriss der Bakteriologie und Lehrbuch der speziellen bakteriologischen Diagnostik. 1st ed. J F Lehmann, München. Google Scholar
[49] Li X, Roseman S. The chitinolytic cascade in Vibrios is regulated by chitin oligosaccharides and a two-component chitin catabolic sensor/kinase. Proc Natl Acad Sci USA, 2004, 101: 627-631 CrossRef ADS Google Scholar
[50]
Li
S,
Wang
L,
Hao
J,
Xing
M,
Sun
J,
Sun
M.
Purification and characterization of a new alginate lyase from marine bacterium
[51]
Liao
L,
Xu
X W,
Jiang
X W,
Cao
Y,
Yi
N,
Huo
Y Y,
Wu
Y H,
Zhu
X F,
Zhang
X Q,
Wu
M.
Cloning, expression, and characterization of a new β-Agarase from
[52] Lin H, Yu M, Wang X, Zhang X H. Comparative genomic analysis reveals the evolution and environmental adaptation strategies of vibrios. BMC Genomics, 2018, 19: 135 CrossRef PubMed Google Scholar
[53]
Liu
Z,
Liu
J.
Evaluating bacterial community structures in oil collected from the sea surface and sediment in the northern Gulf of Mexico after the
[54]
Lukjancenko
O,
Ussery
D W.
[55]
Main
C R,
Salvitti
L R,
Whereat
E B,
Coyne
K J.
Community-level and species-specific associations between phytoplankton and particle-associated
[56] Martínez A, Ventouras L A, Wilson S T, Karl D M, DeLong E F. Metatranscriptomic and functional metagenomic analysis of methylphosphonate utilization by marine bacteria. Front Microbiol, 2013, 4 CrossRef Google Scholar
[57]
Machado
H,
Gram
L.
The
[58] Miller S D, Haddock S H D, Elvidge C D, Lee T F. Detection of a bioluminescent milky sea from space. Proc Natl Acad Sci USA, 2005, 102: 14181-14184 CrossRef PubMed ADS Google Scholar
[59]
Oberbeckmann
S,
Fuchs
B M,
Meiners
M,
Wichels
A,
Wiltshire
K H,
Gerdts
G.
Seasonal dynamics and modeling of a
[60] Oliver J D. Recent findings on the viable but nonculturable state in pathogenic bacteria. Fems Microbiol Rev, 2010, 34: 415-425 CrossRef PubMed Google Scholar
[61] Øvreås L, Bourne D, Sandaa R, Casamayor E, Benlloch S, Goddard V, Smerdon G, Heldal M, Thingstad T. Response of bacterial and viral communities to nutrient manipulations in seawater mesocosms. Aquat Microb Ecol, 2003, 31: 109-121 CrossRef Google Scholar
[62]
Pascual
J,
Macián
M C,
Arahal
D R,
Garay
E,
Pujalte
M J.
Multilocus sequence analysis of the central clade of the genus
[63]
Phillips
K E,
Satchell
K J F.
[64]
Rizzo
L,
Fraschetti
S,
Alifano
P,
Tredici
M S,
Stabili
L.
Association of
[65]
Rubio-Portillo
E,
Gago
J F,
Martínez-García
M,
Vezzulli
L,
Rosselló-Móra
R,
Antón
J,
Ramos-Esplá
A A.
[66]
Rubio-Portillo
E,
Yarza
P,
Peñalver
C,
Ramos-Esplá
A A,
Antón
J.
New insights into
[67]
Ruby
E G,
Urbanowski
M,
Campbell
J,
Dunn
A,
Faini
M,
Gunsalus
R,
Lostroh
P,
Lupp
C,
McCann
J,
Millikan
D,
Schaefer
A,
Stabb
E,
Stevens
A,
Visick
K,
Whistler
C,
Greenberg
E P.
Complete genome sequence of
[68]
Sakazaki R, Iwanami S, Fukumi H. 1963. Studies on the enteropathogenic facultatively halophilic bacteria
[69]
Siboni
N,
Balaraju
V,
Carney
R,
Labbate
M,
Seymour
J R.
Spatiotemporal dynamics of
[70] Simu K, Hagström A. Oligotrophic bacterioplankton with a novel single-cell life strategy. Appl Environ Microbiol, 2004, 70: 2445-2451 CrossRef Google Scholar
[71]
Sneha
K G,
Anas
A,
Jayalakshmy
K V,
Jasmin
C,
Das
P V V,
Pai
S S,
Pappu
S,
Nair
M,
Muraleedharan
K R,
Sudheesh
K,
Nair
S.
Distribution of multiple antibiotic resistant
[72]
Sugano Y, Matsumoto T, Kodama H, Noma M. 1993. Cloning and sequencing of agaA, a unique agarose 0107 gene from a marine bacterium,
[73]
Suginta
W,
Chuenark
D,
Mizuhara
M,
Fukamizo
T.
Novel β-N-acetylglucosaminidases from
[74]
Suginta
W,
Vongsuwan
A,
Songsiriritthigul
C,
Prinz
H,
Estibeiro
P,
Duncan
R R,
Svasti
J,
Fothergill-Gilmore
L A.
An endochitinase A from
[75]
Svitil A L, Chadhain S, Moore J A, Kirchman D L. 1997. Chitin degradation proteins produced by the marine bacterium
[76]
Takemura
A F,
Chien
D M,
Polz
M F.
Associations and dynamics of
[77]
Tall
A,
Hervio-Heath
D,
Teillon
A,
Boisset-Helbert
C,
Delesmont
R,
Bodilis
J,
Touron-Bodilis
A.
Diversity of
[78]
Tanaka
M,
Umemoto
Y,
Okamura
H,
Nakano
D,
Tamaru
Y,
Araki
T.
Cloning and characterization of a β-1,4-mannanase 5C possessing a family 27 carbohydrate-binding module from a marine bacterium,
[79] Thompson F L, Austin B, Swings J. 2006. The Biology of Vibrios. Washington D C: American Society for Microbiology. Google Scholar
[80] Thompson F L, Gevers D, Thompson C C, Dawyndt P, Naser S, Hoste B, Munn C B, Swings J. Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol, 2005, 71: 5107-5115 CrossRef PubMed Google Scholar
[81]
Thompson J R, Polz M F. 2006. Dynamics of
[82]
Thompson
J R,
Randa
M A,
Marcelino
L A,
Tomita-Mitchell
A,
Lim
E,
Polz
M F.
Diversity and dynamics of a north atlantic coastal
[83]
Turner
J W,
Good
B,
Cole
D,
Lipp
E K.
Plankton composition and environmental factors contribute to
[84] Thurber R V, Willner-Hall D, Rodriguez-Mueller B, Desnues C, Edwards R A, Angly F, Dinsdale E, Kelly L, Rohwer F. Metagenomic analysis of stressed coral holobionts. Environ Microbiol, 2009, 11: 2148-2163 CrossRef PubMed Google Scholar
[85] Vezzulli L, Brettar I, Pezzati E, Reid P C, Colwell R R, Höfle M G, Pruzzo C. Long-term effects of ocean warming on the prokaryotic community: Evidence from the vibrios. ISME J, 2012, 6: 21-30 CrossRef PubMed Google Scholar
[86]
Vezzulli
L,
Grande
C,
Reid
P C,
Hélaouët
P,
Edwards
M,
Höfle
M G,
Brettar
I,
Colwell
R R,
Pruzzo
C.
Climate influence on
[87]
Vezzulli
L,
Grande
C,
Tassistro
G,
Brettar
I,
Höfle
M G,
Pereira
R P A,
Mushi
D,
Pallavicini
A,
Vassallo
P,
Pruzzo
C.
Whole-genome enrichment provides deep insights into
[88]
Vezzulli
L,
Pezzati
E,
Moreno
M,
Fabiano
M,
Pane
L,
Pruzzo
C,
Pruzzo
C.
Benthic ecology of
[89]
Wang H, Liu J, Wang Y, Zhang X H. 2011.
[90]
Wang
Y,
Zhang
X H,
Yu
M,
Wang
H,
Austin
B.
[91]
Wang
Z,
Robertson
K L,
Liu
C,
Liu
J L,
Johnson
B J,
Leary
D H,
Compton
J R,
Vuddhakul
V,
Legler
P M,
Vora
G J.
A novel
[92] West P A, Okpokwasili G C, Brayton P R, Grimes D J, Colwell R R. 1984. Numerical taxonomy of phenanthrene-degrading bacteria isolated from the Chesapeake Bay. Appl Environ Microbiol, 48: 988–993. Google Scholar
[93]
Westrich
J R,
Ebling
A M,
Landing
W M,
Joyner
J L,
Kemp
K M,
Griffin
D W,
Lipp
E K.
Saharan dust nutrients promote
[94]
Xu
H S,
Roberts
N,
Singleton
F L,
Attwell
R W,
Grimes
D J,
Colwell
R R.
Survival and viability of nonculturable
[95]
Zhang
W,
Sun
L.
Cloning, characterization, and molecular application of a beta-agarase gene from
[96]
Zhu
B,
Tan
H,
Qin
Y,
Xu
Q,
Du
Y,
Yin
H.
Characterization of a new endo-type alginate lyase from
[97]
Zhu
B,
Sun
Y,
Ni
F,
Ning
L,
Yao
Z.
Characterization of a new endo-type alginate lyase from
Figure 1
Abundance of
Figure 2
Phylogenetic tree of 115
Figure 3
Potential action mode of
Category of organic carbon | Specific organic carbon source* |
Polysaccharides | Chitin, alginic acid, agar, laminarin, starch, xylan, fucoidan, mannan, cellulose and pectin |
Disaccharides | Maltose, cellobiose, lactose, salicin, trehalose, sucrose and esculin |
Monosaccharides | D-glucose, D-mannitol, D-fructose, D-galactose, α-D-fucose, L-arabinose, D-arabitol, D-galacturonate, D-mannitol, D-mannose, L-sorbitol, D-xylose, and myo-inositol |
Small compounds | Glycerol, ethanol, and acetate |
Other compounds | Polyhydroxyl alcohol, lipid, lecithin, gelatin, casein, DNA, mucin, and hydrocarbon (alkane and aromatic hydrocarbon) |
* extracted from
Bacterial taxon | Enzyme and family | Accession number | Product | Reference |
β-Agarase AgaV, GH16 | ABL06969 | NA4, NA6 | ||
β-Agarase AgaB, GH50 | BAG71427 | NA2 | ||
β-Agarase AgaC, GH118 | BAF03590 | NA4, NA6, NA8 | ||
β-Agarase AgaA, GH86 | BAA03541 | NA2 | ||
β-Agarase AgaD, GH16 | BAF34350 | NA2, NA | ||
Agarase AG-a, GH50 | EU699809 | NA4, NA6 | ||
β-Agarase AgaACN4, GH50 | HM563685 | DP4, DP6, DP8 | ||
β-glucosidase (laminarinase) LamN, GH3 | EDL69935 | Glucose | ||
endo-β-1,4-glucanase Cel5A, GH5 | ADJ93836 | cellobiose | ||
β-1,4-mannanase Man5C, GH5 | BAG69482 | M1-5 | ||
chitinase Pa-Chi, GH18 | BAF91600 | (GlcNAc)2 | ||
chitinase ChiA, GH18 | AAC72236 | GlcNAc | ||
chitinase ChiA, GH18 | AAC46383 | (GlcNAc)2-6 | ||
chitinase ChiA, GH18 | BAF76068 | (GlcNAc)2 | ||
chitinase (reducing end-specific), GH19 | BAE86996 | (GlcNAc)2 | ||
chitodextrinase EndoI, GH18 | AAC44673 | (GlcNAc)2, (GlcNAc)3 | ||
β-N-acetylglucosaminidases, GH20 | HM175716 | GlcNAc | ||
endochitinase A, GH18 | Q9AMP1 | (GlcNAc)2 | ||
β-1,3-xylanase Xyl4, GH26 | BAD51934 | X1-3 | ||
endo-1,3-β-xylanase TxyA, GH26 | BAA94698 | xylooligosaccharides | ||
alginate lyase Algb, PL7 | KC777293 | DP2-5 | ||
polysaccharide-decomposing enzyme AlyB, PL7 | NC_007088.5 | L-Lysine | ||
alginate lyase AlySY08, PL7 | KY214288 | UADs | ||
alginate lyase AlgNJU-03, PL7 | GAK20697.1 | DP2-4 | ||
alginate lyase Aly-IV, PL7 | PRJNA382465 | DP1-3 |
GH, glycosidic hydrolase; NA2, neoagarobiose; NA4, neoagarotetraose; NA6, neoagarohexaose; NA8, neoagarohexaose; GlcNAc, β-d-N-acetylglucosaminyl; M1-5: mannose, mannobiose, mannotriose, mannotetraose, and mannopentaose; X1-3: xylobiose, xylotriose and xylotetraose; PL: polysaccharide lyase family; DP: oligosaccharides with low degree of polymerization; UAD: unsaturated alginate disaccharides