SCIENCE CHINA Earth Sciences, Volume 60 , Issue 7 : 1310-1316(2017) https://doi.org/10.1007/s11430-016-9024-3

Oxygen cyclotron harmonic waves observed using Van Allen Probes

More info
  • ReceivedNov 15, 2016
  • AcceptedFeb 28, 2017
  • PublishedApr 12, 2017



National Natural Science Foundation of China(41374168,41521063 ,&, 41174140)

Key Grant Project of Chinese Ministry of Education(2042015kf0169)

Program for New Century Excellent Talents in University(NCET-13-0446)


We acknowledge the Van Allen Probes data from the EMFISIS instrument obtained from http://emfisis.physics. uiowa.edu/data/index and the EFW instrument obtained from http:// www.space.umn.edu/rbspefw-data/. The data of electron density from the Van Allen Probes are provided by W.S. Kurth. The solar dynamic pressure, AE index and SYM-H index data are provided by Space Physics Data Facility at http://omniweb.gsfc.nasa.gov/. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41374168, 41521063 & 41174140), Key Grant Project of Chinese Ministry of Education (Grant No. 2042015KF0169) and Program for New Century Excellent Talents in University (Grant No. NCET-13-0446).


[1] Anderson B J, Denton R E, Fuselier S A. On determining polarization characteristics of ion cyclotron wave magnetic field fluctuations. J Geophys Res, 1996, 10113195-13213 CrossRef ADS Google Scholar

[2] Bhatia K G, Lakhina G S. Proton-cyclotron instabilities in non-uniform loss-cone magnetospheric plasma. Astrophys Space Sci, 1980, 70467-481 CrossRef ADS Google Scholar

[3] Boardsen S A, Gallagher D L, Gurnett D A, Peterson W K, Green J L. Funnel-shaped, low-frequency equatorial waves. J Geophys Res, 1992, 9714967 CrossRef ADS Google Scholar

[4] Chaston C C, Bonnell J W, McFadden J P, Ergun R E, Carlson C W. Electromagnetic ion cyclotron waves at proton cyclotron harmonics. J Geophys Res, 2002, 1071351 CrossRef ADS Google Scholar

[5] Chen L, Thorne R M, Jordanova V K, Horne R B. Global simulation of magnetosonic wave instability in the storm time magnetosphere. J Geophys Res, 2010, 115A11222 CrossRef ADS Google Scholar

[6] Chen L, Thorne R M, Bortnik J. The controlling effect of ion temperature on EMIC wave excitation and scattering. Geophys Res Lett, 2011, 38L16109 CrossRef ADS Google Scholar

[7] Chen L, Thorne R M. Perpendicular propagation of magnetosonic waves. Geophys Res Lett, 2012, 39L14102 CrossRef ADS Google Scholar

[8] Chen L, Thorne R M, Shprits Y, Ni B. An improved dispersion relation for parallel propagating electromagnetic waves in warm plasmas: Application to electron scattering. J Geophys Res-Space Phys, 2013, 1182185-2195 CrossRef ADS Google Scholar

[9] Denton R E, Engebretson M J, Keiling A, Walsh A P, Gary S P, Décréau P M E, Cattell C A, Rème H. Multiple harmonic ULF waves in the plasma sheet boundary layer: Instability analysis. J Geophys Res, 2010, 115A12224 CrossRef ADS Google Scholar

[10] Engebretson M J, Kahlstorf C R G, Posch J L, Keiling A, Walsh A P, Denton R E, Broughton M C, Owen C J, Fornaçon K H, Rème H. Multiple harmonic ULF waves in the plasma sheet boundary layer observed by Cluster. J Geophys Res, 2010, 115A12225 CrossRef ADS Google Scholar

[11] Gary S P, Liu K, Winske D, Denton R E. Ion Bernstein instability in the terrestrial magnetosphere: Linear dispersion theory. J Geophys Res, 2010, 115A12209 CrossRef ADS Google Scholar

[12] Gary S P, Liu K, Winske D. Bernstein instability driven by suprathermal protons in the ring current. J Geophys Res, 2011, 116A08215 CrossRef ADS Google Scholar

[13] Greenspan M E, Hamilton D C. Relative contributions of H+ and O+ to the ring current energy near magnetic storm maximum. J Geophys Res, 2002, 1071043 CrossRef ADS Google Scholar

[14] Gul’elmi A V, Klaine B I, Potapov A S. Excitation of magnetosonic waves with discrete spectrum in the equatorial vicinity of the plasmapause. Planet Space Sci, 1975, 23279-286 CrossRef ADS Google Scholar

[15] Hamilton D C, Gloeckler G, Ipavich F M, Stüdemann W, Wilken B, Kremser G. Ring current development during the great geomagnetic storm of February 1986. J Geophys Res, 1988, 9314343-14355 CrossRef ADS Google Scholar

[16] Horne R B, Thorne R M, Glauert S A, Meredith N P, Pokhotelov D, Santolík O. Electron acceleration in the Van Allen radiation belts by fast magnetosonic waves. Geophys Res Lett, 2007, 34L17107 CrossRef ADS Google Scholar

[17] Horne R B, Wheeler G V, Alleyne H S C K. Proton and electron heating by radially propagating fast magnetosonic waves. J Geophys Res, 2000, 10527597-27610 CrossRef ADS Google Scholar

[18] Kletzing C A, Kurth W S, Acuna M, MacDowall R J, Torbert R B, Averkamp T, Bodet D, Bounds S R, Chutter M, Connerney J, Crawford D, Dolan J S, Dvorsky R, Hospodarsky G B, Howard J, Jordanova V, Johnson R A, Kirchner D L, Mokrzycki B, Needell G, Odom J, Mark D, Pfaff R, Phillips J R, Piker C W, Remington S L, Rowland D, Santolik O, Schnurr R, Sheppard D, Smith C W, Thorne R M, Tyler J. The electric and magnetic field instrument suite and integrated science (EMFISIS) on RBSP. Space Sci Rev, 2013, 179127-181 CrossRef ADS Google Scholar

[19] Kurth W S, De Pascuale S, Faden J B, Kletzing C A, Hospodarsky G B, Thaller S, Wygant J R. Electron densities inferred from plasma wave spectra obtained by the Waves instrument on Van Allen Probes. J Geophys Res-Space Phys, 2015, 120904-914 CrossRef PubMed ADS Google Scholar

[20] Lee J H, Chen L, Angelopoulos V, Thorne R M. THEMIS observations and modeling of multiple ion species and EMIC waves: Implications for a vanishing He+ stop band. J Geophys Res, 2012, 117A06204 CrossRef ADS Google Scholar

[21] Liu H, Kokubun S, Hayashi K. Equatorial electromagnetic emission with discrete spectra near harmonics of oxygen gyrofrequency during magnetic storm. Geophys Res Lett, 1994, 21225-228 CrossRef ADS Google Scholar

[22] Mann G, Hackenberg P, Marsch E. Linear mode analysis in multi-ion plasmas. J Plasma Phys, 1997, 58205-221 CrossRef ADS Google Scholar

[23] Mauk B H, Fox N J, Kanekal S G, Kessel R L, Sibeck D G, Ukhorskiy A. Science objectives and rationale for the radiation belt storm probes mission. Space Sci Rev, 2013, 1793-27 CrossRef ADS Google Scholar

[24] Meredith N P, Horne R B, Anderson R R. Survey of magnetosonic waves and proton ring distributions in the Earth’s inner magnetosphere. J Geophys Res, 2008, 113A06213 CrossRef ADS Google Scholar

[25] Perraut S, Roux A, Robert P, Gendrin R, Sauvaud J A, Bosqued J M, Kremser G, Korth A. A systematic study of ULF Waves Above FH+ from GEOS 1 and 2 Measurements and Their Relationships with proton ring distributions. J Geophys Res, 1982, 876219-6236 CrossRef ADS Google Scholar

[26] Pokhotelov O A, Pokhotelov D O, Feygin F Z, Gladychev V A, Parrot M, Hayashi K, Kangas J, Mursula K. Oxygen cyclotron harmonic waves in the deep plasmasphere during magnetic storms. J Geophys Res, 1997, 10277-83 CrossRef ADS Google Scholar

[27] Posch J L, Engebretson M J, Olson C N, Thaller S A, Breneman A W, Wygant J R, Boardsen S A, Kletzing C A, Smith C W, Reeves G D. Low-harmonic magnetosonic waves observed by the Van Allen Probes. J Geophys Res-Space Phys, 2015, 1206230-6257 CrossRef ADS Google Scholar

[28] Russell C T, Holzer R E, Smith E J. OGO 3 observations of ELF noise in the magnetosphere: 2. The nature of the equatorial noise. J Geophys Res, 1970, 75755-768 CrossRef ADS Google Scholar

[29] Volwerk M, Nakamura R, Baumjohann W, Uozumi T, Yumoto K, Balogh A. Tailward propagation of Pi2 waves in the Earth’s magnetotail lobe. Ann Geophys, 2008, 264023-4030 CrossRef Google Scholar

[30] Wang D, Yuan Z, Yu X, Deng X, Zhou M, Huang S, Li H, Wang Z, Qiao Z, Kletzing C A, Wygant J R. Statistical characteristics of EMIC waves: Van Allen Probe observations. J Geophys Res-Space Phys, 2015, 1204400-4408 CrossRef ADS Google Scholar

[31] Wygant J R, Bonnell J W, Goetz K, Ergun R E, Mozer F S, Bale S D, Ludlam M, Turin P, Harvey P R, Hochmann R, Harps K, Dalton G, McCauley J, Rachelson W, Gordon D, Donakowski B, Shultz C, Smith C, Diaz-Aguado M, Fischer J, Heavner S, Berg P, Malsapina D M, Bolton M K, Hudson M, Strangeway R J, Baker D N, Li X, Albert J, Foster J C, Chaston C C, Mann I, Donovan E, Cully C M, Cattell C A, Krasnoselskikh V, Kersten K, Brenneman A, Tao J B. The electric field and waves instruments on the radiation belt storm probes mission. Space Sci Rev, 2013, 179183-220 CrossRef ADS Google Scholar

[32] Yu X, Yuan Z, Wang D, Li H, Huang S, Wang Z, Zheng Q, Zhou M, Kletzing C A, Wygant J R. In situ observations of EMIC waves in O+ band by the Van Allen Probe A. Geophys Res Lett, 2015, 421312-1317 CrossRef ADS Google Scholar

[33] Yuan Z, Xiong Y, Pang Y, Zhou M, Deng X, Trotignon J G, Lucek E, Wang J. Wave-particle interaction in a plasmaspheric plume observed by a Cluster satellite. J Geophys Res, 2012, 117A03205 CrossRef ADS Google Scholar

[34] Yuan Z, Li M, Xiong Y, Li H, Zhou M, Wang D, Huang S, Deng X, Wang J. Simultaneous observations of precipitating radiation belt electrons and ring current ions associated with the plasmaspheric plume. J Geophys Res-Space Phys, 2013, 1184391-4399 CrossRef ADS Google Scholar

[35] Yuan Z, Xiong Y, Huang S, Deng X, Pang Y, Zhou M, Dandouras I, Trotignon J G, Fazakerley A N, Lucek E. Cold electron heating by EMIC waves in the plasmaspheric plume with observations of the Cluster satellite. Geophys Res Lett, 2014, 411830-1837 CrossRef ADS Google Scholar

[36] Yuan Z, Yu X, Wang D, Huang S, Li H, Yu T, Qiao Z, Wygant J R, Funsten H O. In situ evidence of the modification of the parallel propagation of EMIC waves by heated He+ ions. J Geophys Res-Space Phys, 2016, 1216711-6717 CrossRef ADS Google Scholar

  • Figure 1

    Space environment indexes during October 6–13, 2014, provided by OMNI web. (a) Solar dynamic pressure (b) AE index. (c) Sym-H index. The first arrow in panel (a) indicates the Sudden Storm Commencement (SSC). The solid red rectangle denotes the occurrence interval of electromagnetic oxygen cyclotron harmonic waves.

  • Figure 2

    (a) Electron density profile during the inbound trajectory of the Van Allen Probe A orbit between 21:00 UT and 22:20 UT on October 9, 2014. (b) Power spectral density of one perpendicular component (ΔBt1) of the perturbed magnetic field vector in the field-aligned coordinate (FAC) system. (c) Wave ellipticity. (d) Wave normal angle (WNA). The solid and dashed black curves denote the local helium and oxygen ion gyrofrequencies, respectively. The dashed blue curves in panel (b) denote the equatorial oxygen ion cyclotron harmonic frequencies. The two solid red straight lines denote the wave intense interval, whereas the two solid blue straight lines denote the time interval of the fine structured harmonic emissions.

  • Figure 3

    PSD of left-hand, right-hand, and compressional components of the perturbed magnetic field shown by solid blue, red, and black curves, respectively. The dashed black vertical lines denote the equatorial oxygen cyclotron harmonic frequencies (f=1–8fO+_eq).

  • Figure 4

    Average PSD, power weighted average ellipticity and power weighted average WNA of different subintervals shown, respectively in panels (a)–(c). The four straight lines are shown in the same wave as in Figure 2. Note that the peak in the second harmonics (blue curves in panel (a)) just in the left side of the first red vertical line is due to the satellite spin harmonics noise since the second subinterval involves these spin harmonic frequencies.


Contact and support