logo

气溶胶与东亚季风相互影响的研究进展

吴国雄 ①,*, 李占清 ②,⑥, 符淙斌 , 张小曳 , RenYi ZHANG , 张人禾 , 周天军 ①,⑥, 李建平 ②,⑥, 李剑东 ①,†, 周德刚 ①,‡, 武亮 , 周连童 , 何编 , 黄荣辉 ①,§
More info
  • ReceivedApr 1, 2015
  • AcceptedSep 9, 2015
  • PublishedNov 2, 2015

Abstract


Funded by

中国科学院第33次科学与技术前沿论坛(L12220036)

国家重点基础研究发展计划项目(2013CB430201)


Acknowledgment

感谢美国宇航局加州理工学院空气推进实验室的王元, 美国科罗拉多大学波尔得分校机械工程系的张丽, 北京师范大学全球变化研究院的杨新和张芳, 中国科学院大气物理研究所廖宏、朱建磊、宋丰飞、林壬萍、钱诚、陈晓龙和德国马普气象研究所李红梅等人在本文的编写中提供的帮助.


References

[1] 范 学花, 陈 洪滨, 夏 祥鳌. 中国大气气溶胶辐射特性参数的观测与研究进展. 大气科学, 2013, 37: 477-498 Google Scholar

[2] 郭 其蕴. 东亚夏季风强度指数及其变化的分析. 地理学报, 1983, 38: 207-217 Google Scholar

[3] 黄 荣辉. 中国重大气候灾害的形成机理和预测理论研究综述. 中国基础研究, 2004, 6: 6-16 Google Scholar

[4] 穆 穆, 张 人禾. 应对雾霾天气: 气象科学与技术大有可为. 中国科学: 地球科学, 2014, 44: 1-2 Google Scholar

[5] 吴 兑, 吴 晓京, 李 菲, 谭 浩波, 陈 静, 曹 治强, 孙 弦, 陈 欢欢, 李 海燕. 中国大陆1951~2005年霾的时空变化. 气象学报, 2010, 68: 680-688 Google Scholar

[6] 辛 金元, 王 跃思, 李 占清, 王 普才, 王 式功, 温 天雪, 孙 扬. 中国地区太阳分光辐射观测网的建立和仪器定标. 环境科学, 2006, 27: 1697-1702 Google Scholar

[7] 宇 如聪, 周 天军, 李 建, 辛 晓歌. 中国东部气候年代际变化三维特征的研究进展. 大气科学, 2008, 32: 893-905 Google Scholar

[8] 张 莉, 丁 一汇, 任 国玉. 我国北方沙尘天气演变趋势及其气候成因分析. 应用气象学报, 2005, 16: 583-592 Google Scholar

[9] 张 人禾, 李 强, 张 若楠. 2013年1月中国东部持续性强雾霾天气产生的气象条件分析. 中国科学: 地球科学 2014, 2014, 44: 27-36 Google Scholar

[10] 张 小曳, 孙 俊英, 王 亚强, 李 卫军, 张 蔷, 王 炜罡, 权 建农, 曹 国良, 王 继志, 杨 元琴, 张 养梅. 我国雾-霾成因及其治理的思考. 科学通报, 2013, 58: 1178-1187 Google Scholar

[11] Ackerman A S, Toon O B, Hobbs P V. A model for particle microphysics, turbulent mixing, and radiative transfer in the stratocumulus-topped marine boundary layer and comparisons with measurements. J Atmos Sci, 1995, 52: 1204-1236 CrossRef Google Scholar

[12] Albrecht B. Aerosols, cloud microphysics, and fractional cloudiness. Science, 245: 1227–1230. 1989, Google Scholar

[13] Andreae M O, Rosenfeld D, Artaxo P, Costa A A, Frank G P, Longo K M, Silva-Dias M A F. Smoking rain clouds over the Amazon. Science, 2004, 303: 1337-1341 CrossRef Google Scholar

[14] Bollasina M A, Ming Y, Ramaswamy V. Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 2011, 334: 502-505 CrossRef Google Scholar

[15] Che H Z, Zhang X Y, Chen H B, Damiri B, Goloub P, Li Z Q, Zhang X C, Wei Y, Zhou H G, Dong F, Li D P, Zhou T M. Instrument calibration and aerosol optical depth validation of the China Aerosol Remote Sensing Network. J Geophys Res, 114: D03206, doi. 2009, : 029/2008JD011030 Google Scholar

[16] Chin M. Dirtier air from a weaker monsoon. Nat Geosci, 2012, 5: 449-450 CrossRef Google Scholar

[17] Ding A J, Fu C B, Yang X Q, Sun J N, Petäjä T, Kerminen V M, Wang T, Xie Y, Herrmann E, Zheng L F, Nie W, Liu Q, Wei X L, Kulmala M. Intense atmospheric pollution modifies weather: A case of mixed biomass burning wither fossil fuel combustion pollution in the eastern China. Atmos Chem Phys, 2013, 13: 10545-10554 CrossRef Google Scholar

[18] Dong L, Zhou T J. The Indian Ocean sea surface temperature warming simulated by CMIP5 models during the 20th century: Competing forcing roles of GHGs and anthropogenic aerosols. J Clim, 2014, 27: 3348-3362 CrossRef Google Scholar

[19] Dong L, Zhou T J, Wu B. Indian Ocean warming during 1958–2004 simulated by a climate system model and its mechanism. Clim Dyn, 2014, 42: 203-217 CrossRef Google Scholar

[20] Fan J W, Zhang R Y, Tao W K, Mohr K I. Effects of aerosol optical properties on deep convective clouds and radiative forcing. J Geophys Res, 113: D08209, doi. 2008, : 029/2007JD009257 Google Scholar

[21] Fan J W, Yuan T L, Comstock J M, Ghan S, Khain A, Leung L R, Li Z Q, Martins V J, Ovchinnikov M. Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J Geophys Res, 114: D22206, doi. 2009, : 029/2009JD012352 Google Scholar

[22] Fan J W, Leung L R, Rosenfeld D, Chen Q, Li Z Q, Zhang J Q, Yan H R. 2013. Microphysical effects determine macrophysical response for aerosol impact on deep convective clouds. Proc Natl Acad Sci USA, 110, doi: 10.1073/pnas.1316830110. Google Scholar

[23] Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey D W, Haywood J, Lean J, Lowe D C, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R. Changes in atmospheric constituents and in radiative forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. 2007, Google Scholar

[24] Guo S, Hu M, Zamora M L, Peng J F, Shang D J, Zheng J, Du Z F, Wu Z J, Shao M, Zeng L M, Molina M J, Zhang R Y. Elucidating severe urban haze formation in China. Proc Natl Acad Sci USA, 2014, 111: 17373-17378 CrossRef Google Scholar

[25] He B, Bao Q, Li J D, Wu G X, Liu Y M, Wang X C, Sun Z B. Influences of external forcing changes on the summer cooling trend over East Asia. Clim Change, 2013, 117: 829-841 CrossRef Google Scholar

[26] Hu Z Z. Interdecadal variability of summer climate over East Asia and its association with 500-hPa height and global sea surface temperature. J Geophys Res, 1997, 102: 19403-19412 CrossRef Google Scholar

[27] Huang J P, Minnis R, Chen B, Huang Z W, Liu Z Y, Zhao Q Y, Yi Y H, Ayers J K. Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J Geophys Res, 113: D23212, doi. 2008a, : 029/2008JD010620 Google Scholar

[28] Huang J P, Zhang W, Zuo J Q, Bi J R, Shi J S, Wang X, Chang Z L, Huang Z W, Yang S, Zhang B D, Wang G Y, Feng G H, Yuan J Y, Zhang L, Zuo H C, Wang S G, Fu C B, Chou J F. An overview of the semi-arid climate and environment research observatory over the Loess Plateau. Adv Atmos Sci, 2008b, 25: 906-921 CrossRef Google Scholar

[29] Huang J P, Wang T H, Wang W C, Li Z Q, Yan H R. Climate effect of dust aerosols over East Asian arid and semi-arid regions. J Geophys Res, 2014, 119: 11398-11416 Google Scholar

[30] Huang R H, Chen J L, Huang G. Characteristics and variations of the East Asian monsoon system and its impacts on climate disasters in China. Adv Atmos Sci, 2007, 24: 993-1023 CrossRef Google Scholar

[31] Huang Y, Dickinson R E, Chameides W L. Impact of aerosol indirect effect on surface temperature over East Asia. Proc Natl Acad Sci USA, 2006, 103: 4371-4376 CrossRef Google Scholar

[32] Intergovernmental Panel on Climate Change (IPCC). 2013.Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. Google Scholar

[33] Jiang Y Q, Liu X H, Yang X Q, Wang M H. A numerical study of the effect of different aerosol types on East Asian summer clouds and precipitation. Atmos Environ, 2013, 70: 51-63 CrossRef Google Scholar

[34] Khain A P, BenMoshe N, Pokrovsky A. Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J Atmos Sci, 2008, 65: 1721-1748 CrossRef Google Scholar

[35] Koren I, Martins J V, Remer L A, Afargan H. Smoke invigoration versus inhibition of clouds over the Amazon. Science, 2008, 321: 946-949 CrossRef Google Scholar

[36] Lau K M, Kim M K. Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau. Clim Dyn, 2006, 26: 855-864 CrossRef Google Scholar

[37] Lee K H, Li Z Q, Wong M S, Xin J Y, Wang Y S, Hao W M, Zhao F S. Aerosol single scattering albedo estimated across China from a combination of ground and satellite measurements. J Geophys Res, 112: D22S15, doi. 2010, : 029/2007JD009077 Google Scholar

[38] Li G H, Wang Y, Lee K H, Diao Y W, Zhang R Y. Increased winter precipitation over the North Pacific from 1984–1994 to 1995–2005 inferred from the global precipitation climatology project. Geophys Res Lett, 35: L13821, doi. 2008, : 029/2008GL034668 Google Scholar

[39] Li H M, Dai A G, Zhou T J, Lu J. Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950–2000. Clim Dyn, 2010, 34: 501-514 CrossRef Google Scholar

[40] Li J D, Sun Z A, Liu Y M, Li J N, Wang W C, Wu G X. A study on sulfate optical properties and direct radiative forcing using the LASG-IAP general circulation model. Adv Atmos Sci, 2012, 29: 1185-1199 CrossRef Google Scholar

[41] Li J D, Wang W C, Sun Z A, Wu G X, Liao H, Liu Y M. Decadal variation of East Asian radiative forcing due to anthropogenic aerosols during 1850–2100 and the role of atmospheric moisture. Clim Res, 2014, 61: 241-257 CrossRef Google Scholar

[42] Li L J, Wang B, Zhou T J. Contributions of natural and anthropogenic forcings to the summer cooling over eastern China: An AGCM study. Geophys Res Lett, 34: L18807, doi. 2007, : 029/2007GL030541 Google Scholar

[43] Li Q, Zhang R H, Wang Y. 2015. Interannual variation of the wintertime fog-haze days across central and eastern China and its relation with East Asian winter monsoon. Int J Climatol, doi: 10.1002/joc.4350. Google Scholar

[44] Li W J, Shao L Y. Transmission electron microscopy study of aerosol particles from the brown hazes in northern China. J Geophys Res, 114: D09302, doi. 2009, : 029/2008JD011285 Google Scholar

[45] Li Z Q, Chen H, Cribb M, Dickerson R, Holben B, Li C, Lu D, Luo Y, Maring H, Shi G, Tsay S C, Wang P, Wang Y, Xia X, Zheng Y, Yuan T, Zhao F. Preface to special section on East Asian Study of Tropospheric Aerosols: An International Regional Experiment (EAST-AIRE). J Geophys Res, 112: D22S00, doi. 2007a, : 029/2007JD008853 Google Scholar

[46] Li Z Q, Niu F, Lee K H, Xin J Y, Hao W M, Nordgren B, Wang Y S, Wang P C. Validation and understanding of Moderate Resolution Imaging Specteroradiometer aerosol products (C5) using ground-based measurements from the handheld Sun photometer network in China. J Geophys Res, 112: D22S07, doi. 2007b, : 029/2007JD008479 Google Scholar

[47] Li Z Q, Zhao X P, Kahn R, Mishchenko M, Remer L, Lee K H, Wang M, Laszlo I, Nakajima T, Maring H. Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: A review and perspective. Ann Geophys, 2009, 27: 1-16 CrossRef Google Scholar

[48] Li Z Q, Lee K H, Wang Y S, Xin J Y, Hao W M. First observation-based estimates of cloud-free aerosol radiative forcing across China. J Geophys Res, 115: D00K18, doi. 2010, : 029/2009JD013306 Google Scholar

[49] Li Z Q, Niu F, Fan J W, Liu Y G, Rosenfeld D, Ding Y N. The long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat Geosci, 2011a, 4: 888-894 CrossRef Google Scholar

[50] Li Z Q, Li C, Chen H, Tsay S C, Holben B, Huang J, Li B, Maring H, Qian Y, Shi G, Xia X, Yin Y, Zheng Y, Zhuang G. East Asian Studies of Tropospheric Aerosols and their Impact on Regional Climate (EAST-AIRC): An overview. J Geophys Res, 116: D00K34, doi. 2011b, : 029/2010JD015257 Google Scholar

[51] Lin J C, Matsui T, Pielke R A, Kummerow C. Effects of biomass-burning-derived aerosols on precipitation and clouds in the Amazon Basin: A satellite-based empirical study. J Geophys Res, 2006, 111: D19204 CrossRef Google Scholar

[52] Liu X D, Yan L B, Yang P, Yin Z Y, North G R. Influence of Indian summer monsoon on aerosol loading in East Asia. J Appl Meteor Climat, 2011, 50: 523-533 CrossRef Google Scholar

[53] Luo Y F, Lu D R, Zhou X J, Li W L, He Q. Characteristics of the spatial distribution and yearly variation of aerosol optical depth over China in last 30 years. J Geophys Res, 2001, 106: 14501-14513 CrossRef Google Scholar

[54] Luo Y X, Zheng X B, Zhao T L, Chen J. A climatology of aerosol optical depth over China from recent 10 years of MODIS remote sensing data. Int J Climatol, 2014, 34: 863-870 CrossRef Google Scholar

[55] Ma J Z, Xu X B, Zhao C S, Yan P. A review of atmospheric chemistry research in China: Photochemical smog, haze pollution, and gas-aerosol interactions. Adv Atmos Sci, 2012, 29: 1006-1026 CrossRef Google Scholar

[56] Meehl G A, Arblaster J M, Collins W D. Effects of black carbon aerosols on the Indian monsoon. J Clim, 2008, 21: 2869-2882 CrossRef Google Scholar

[57] Menon S, Hansen J E, Nazarenko L, Luo Y F. Climate effects of black carbon aerosols in China and India. Science, 2002, 297: 2250-2253 CrossRef Google Scholar

[58] Myhre G, Shindell D, Bréon F M, Collins W, Fuglestvedt J, Huang J P, Koch D, Lamarque J F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H. Anthropogenic and natural radiative forcing. In: Stocker T F, Qin D, Plattner G K, et al. eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. 2013, Google Scholar

[59] Niu F, Li Z Q, Li C, Lee K H, Wang M Y. Increase of wintertime fog in China: Potential impacts of weakening of the Eastern Asian monsoon circulation and increasing aerosol loading. J Geophys Res, 115: D00k20, doi. 2010, : 029/2009JD013484 Google Scholar

[60] Niu F, Li Z Q. Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics. Atmos Chem Phys, 2012, 12: 8491-8498 CrossRef Google Scholar

[61] Qian Y, Wang W G, Leung L R, Kaiser D P. Variability of solar radiation under cloud-free skies in China: The role of aerosols. Geophys Res Lett, 34: L12804, doi. 2007, : 029/2006GL028800 Google Scholar

[62] Qian Y, Gong D Y, Fan J W, Leung L R, Bennartz R, Chen D L, Wang W G. Heavy pollution suppresses light rain in China: Observations and modeling. J Geophys Res, 114: D00K02, doi. 2009, : 029/2008JD011575 Google Scholar

[63] Ramanathan V C P J, Crutzen P J, Kiehl J T, Rosenfeld D. Aerosols, climate, and the hydrological cycle. Science, 2001, 294: 2119-2124 CrossRef Google Scholar

[64] Rosenfeld D. Suppression of rain and snow by urban and industrial air pollution. Science, 2000, 287: 1793-1796 CrossRef Google Scholar

[65] Rosenfeld D, Lohmann U, Raga G B, O’Dowd C D, Kulmala M, Fuzzi S, Reissell A, Andreae M O. Flood or drought: How do aerosols affect precipitation? Science, 2008, 321: 1309-1313 Google Scholar

[66] Shi G Y, Hayasaka T, Ohmura A, Chen Z H, Wang B, Zhao J Q, Che H Z, Xu L. Data quality assessment and the long-term trend of ground solar radiation in China. J Appl Meteorol, 2008, 47: 1006-1016 CrossRef Google Scholar

[67] Shi Y J, Ge M F, Wang W G. Hygroscopicity of internally mixed aerosol particles containing benzoic acid and inorganic salts. Atmos Environ, 2012, 60: 9-17 CrossRef Google Scholar

[68] Shindell D T, Lamarque J F, Schulz M, Flanner M, Jiao C, Chin M, Young P J, Lee Y H, Rotstayn L, Mahowald N, Milly G, Faluvegi G, Balkanski Y, Collins W J, Conley A J, Dalsoren S, Easter R, Ghan S, Horowitz L, Liu X, Myhre G, Nagashima T, Naik V, Rumbold S T, Skeie T, Sudo K, Szopa S, Takemura T, Voulgarakis A, Yoon J H, Lo F. Radiative forcing in the ACCMIP historical and future climate simulations. Atmos Chem Phys, 2013, 13: 2939-2974 CrossRef Google Scholar

[69] Song F F, Zhou T J, Qian Y. Responses of East Asian summer monsoon to natural and anthropogenic forcings in the latest 17 CMIP5 models. Geophys Res Lett, 2014, 41: 596-603 CrossRef Google Scholar

[70] Sun Y L, Jiang Q, Wang Z F, Fu P Q, Li J, Yang T, Yin Y. Investigation of the sources and evolution processes of severe haze pollution in Beijing in January 2013. J Geophys Res, 119, doi: 10. 2014, : 002/2014JD021641 Google Scholar

[71] Tao W K, Chen J P, Li Z Q, Wang C, Zhang C. Impact of aerosols on convective clouds and precipitation. Rev Geophys, 50, doi: 10. 2012, : 029/2011RG000369 Google Scholar

[72] Twomey S. The influence of pollution on the shortwave albedo of clouds. J Atmos Sci, 1977, 34: 1149-1152 CrossRef Google Scholar

[73] Wang H J. The weakening of Asian monsoon circulation after the end of 1970’s. Adv Atmos Sci, 2001, 18: 376-386 CrossRef Google Scholar

[74] Wang Y, Wan Q, Meng W, Liao F, Tan H, Zhang R. Long-term impacts of aerosols on precipitation and lightning over the Pearl River Delta megacity area in China. Atmos Chem Phys, 2011, 11: 12421-12436 CrossRef Google Scholar

[75] Wang Y, Fan J W, Zhang R Y, Leung L R, Franklin C. Improving bulk microphysics parameterizations in simulations of aerosol effects. J Geophys Res, 2013a, 118: 5361-5379 Google Scholar

[76] Wang Y, Khalizov A, Levy M, Zhang R Y. New Directions: Light absorbing aerosols and their atmospheric impacts. Atmos Environ, 2013b, 81: 713-715 CrossRef Google Scholar

[77] Wang Y, Zhang R Y, Saravanan R. Asian pollution climatically modulates mid-latitude cyclones following hierarchical modelling and observational analysis. Nat Commun, 5: 3098, doi. 2014a, : 038/ncomms4098 Google Scholar

[78] Wang Y, Wang M H, Zhang R Y, Ghan S J, Lin Y, Hu J X, Pan B W, Levy M, Jiang J H, Molina M J. 2014b. Assessing the impacts of anthropogenic aerosols on Pacific storm track using a multi-scale global climate model. Proc Natl Acad Sci USA, 111: 6894–6899, doi: 10.1073/pnas.1403364111. Google Scholar

[79] Wu G X, Guan Y, Liu Y M, Yan J H, Mao J Y. Air-sea interaction and formation of the Asian summer monsoon onset vortex over the Bay of Bengal. Clim Dyn, 2012, 38: 261-279 CrossRef Google Scholar

[80] Xia X A, Chen H B, Philippe G, Zong X M, Zhang W X, Wang P C. Climatological aspects of aerosol optical properties in North China Plain based on ground and satellite remote-sensing data. J Quant Spectrosc Ra, 2013, 127: 12-23 CrossRef Google Scholar

[81] Xin J Y, Wang Y S, Li Z Q, Wang P C, Hao W M, Nordgren B L, Wang S G, Liu G R, Wang L L, Wen T X, Sun Y, Hu B. Aerosol optical depth (AOD) and Angstrom exponent of aerosols observed by the Chinese Sun Hazemeter Network from August 2004 to September 2005. J Geophys Res, 112, doi: 10. 2007, : 029/2006JD007075 Google Scholar

[82] Yan L B, Liu X D, Yang P, Yin Z, North G R. Study of the impact of summer monsoon circulation on spatial distribution of aerosols in east Asia based on numerical simulations. J Appl Meteor Climat, 2011, 50: 2270-2282 CrossRef Google Scholar

[83] Yang X, Ferrat M, Li Z Q. New evidence of orographic precipitation suppression by aerosols in central China. Meteor Atmos Phys, 2013a, 119: 17-29 CrossRef Google Scholar

[84] Yang X, Yao Z Y, Li Z Q, Fan T Y. Heavy air pollution suppresses summer thunderstorms in central China. J Atmos Sol-Terr Phy, 95-96: 28–40. 2013b, Google Scholar

[85] Yang X, Li Z Q. Increases in thunderstorm activity and relationships with air pollution in southeast China. J Geophys Res, 2014, 119: 1835-1844 Google Scholar

[86] Yu R C, Wang B, Zhou T J. Tropospheric cooling and summer monsoon weakening trend over East Asia. Geophys Res Lett, 31: L22212, doi. 2004, : 029/2004GL021270 Google Scholar

[87] Yu R C, Zhou T J. Seasonality and three dimensional structure of the interdecadal change in East Asian monsoon. J Clim, 2007, 20: 5344-5355 CrossRef Google Scholar

[88] Zhang H, Wang Z L, Guo P W. A modeling study of the effects of direct radiative forcing due to carbonaceous aerosol on the climate in East Asia. Adv Atmos Sci, 2009, 26: 57-66 CrossRef Google Scholar

[89] Zhang H, Wang Z L, Wang Z Z, Liu Q X, Gong S L, Zhang X Y, Shen Z P, Lu P, Wei X D, Che H Z, Li L. Simulation of direct radiative forcing of aerosols and their effects on east Asian climate using an interactive AGCM-aerosol coupled system. Clim Dyn, 2012, 38: 1675-1693 CrossRef Google Scholar

[90] Zhang L, Liao H, Li J P. Impacts of Asian summer monsoon on seasonal and interannual variations of aerosols over eastern China. J Geophys Res, 115: D00K05, doi. 2010a, : 029/2009JD012299 Google Scholar

[91] Zhang L, Liao H, Li J P. Impact of the southeast Asian summer monsoon strength on the outflow of aerosols from South Asia. Ann Geophys, 2010b, 28: 277-287 CrossRef Google Scholar

[92] Zhang L, Henze D K, Grell G A, Carmichael G R. Assessment of the sources, distribution and climate impacts of black carbon aerosol over Asia using GEOS-Chem and WRF-Chem. 2012 AGU Fall Meeting Abstracts. San Francisso: AGU Fall Meeting. 2012, Google Scholar

[93] Zhang Q, Streets D G, Carmichael G R, He K B, Huo H, Kannari A, Klimont Z, Park I S, Reddy S, Fu J S, Chen D, Duan L, Lei Y, Wang L T, Yao Z L. Asian emissions in 2006 for the NASA INTEX-B mission. Atmos Chem Phys, 2009, 9: 5131-5153 CrossRef Google Scholar

[94] Zhang R Y, Suh I, Zhao J, Zhang D, Fortner E C, Tie X X, Molina L T, Molina M J. Atmospheric new particle formation enhanced by organic acids. Science, 2004, 304: 1487-1490 CrossRef Google Scholar

[95] Zhang R Y, Li G H, Fan J W, Wu D L, Molina M J. Intensification of Pacific storm track linked to Asian pollution. Proc Natl Acad Sci USA, 2007, 104: 5295-5299 CrossRef Google Scholar

[96] Zhang R Y, Khalizov A F, Pagels J, Zhang D, Xue H X, McMurry P H. Variability in morphology, hygroscopic and optical properties of soot aerosols during internal mixing in the atmosphere. Proc Natl Acad Sci USA, 2008, 105: 10291-10296 CrossRef Google Scholar

[97] Zhang R Y. Getting to the critical nucleus of aerosol formation. Science, 2010, 328: 1366-1367 CrossRef Google Scholar

[98] Zhang R Y, Khalizov A, Wang L, Hu M, Xu W. Nucleation and growth of nanoparticles in the atmosphere. Chem Rev, 2012, 112: 1957-2011 CrossRef Google Scholar

[99] Zhang X Y, Arimoto R, An Z S, Chen T, Zhang G Y, Zhu G H, Wang X F. Atmospheric trace elements over source regions for Chinese dust: Concentrations, sources and atmospheric deposition on the Loess Plateau. Atmos Environ, 1993, 27: 2051-2067 CrossRef Google Scholar

[100] Zhang X Y, Arimoto R, An Z S. Dust emission from Chinese desert sources linked to variations in atmospheric circulation. J Geophys Res, 1997, 102: 28041-28047 CrossRef Google Scholar

[101] Zhang X Y, Cao J J, Li L M, Arimoto R, Cheng Y, Huebert B, Wang D. Characterization of atmospheric aerosol over Xian in the South Margin of the Loess Plateau, China. Atmos Environ, 2002a, 36: 4189-4199 CrossRef Google Scholar

[102] Zhang X Y, Lu H Y, Arimoto R, Gong S L. Atmospheric dust loadings and their relationship to rapid oscillations of the Asian winter monsoon climate: two 250-kyr loess records. Earth Planet Sci Lett, 2002b, 202: 637-643 CrossRef Google Scholar

[103] Zhang X Y, Gong S L, Shen Z X, Mei F M, Xi X X, Liu L C, Zhou Z J, Wang D, Wang Y Q, Cheng Y. Characterization of soil dust aerosol in China and itstransport/distribution during 2001 ACE-Asia. 1. Network Observations. J Geophys Res, 108: 4261, doi. 2003, : 029/1004 2002JD002632 Google Scholar

[104] Zhang X Y, Wang Y Q, Zhang X C, Guo W, Gong S L. Carbonaceous aerosol composition over various regions of China during 2006. J Geophys Res, 113: D14111, doi. 2008a, : 1029/12007JD009525 Google Scholar

[105] Zhang X Y, Wang Y Q, Zhang X C, Guo W, Niu T, Gong S L, Yin Y, Zhao P, Jin J L, Yu M. Aerosol monitoring at multiple locations in China: Contributions of EC and dust to aerosol light absorption. Tellus Ser B-Chem Phys Meteorol, 2008b, 60: 647-656 CrossRef Google Scholar

[106] Zhang X Y, Wang Y Q, Niu T, Zhang X C, Gong S L, Zhang Y M, Sun J Y. Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos Chem Phys, 2012, 11: 26571-26615 Google Scholar

[107] Zhang Y H, Hu M, Zhong L J, Wiedensohler A, Liu S C, Andreae M O, Wang W, Fan S J. Regional integrated experiments on air quality over Pearl River Delta 2004 (PRIDE-PRD2004): Overview. Atmos Environ, 2008, 42: 6157-6173 CrossRef Google Scholar

[108] Zhao X J, Zhao P S, Xu J, Meng W, Pu W W, Dong F, He D, Shi Q F. Analysis of a winter regional haze event and its formation mechanism in the North China Plain. Atmos Chem Phys, 2013, 13: 5685-5696 CrossRef Google Scholar

[109] Zheng G J, Duan F K, Su H, Ma Y L, Cheng Y, Zheng B, Zhang Q, Huang T, Kimoto T, Chang D, Pöschl U, Cheng Y F, He K B. Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions. Atmos Chem Phys, 2014, 15: 2969-2983 Google Scholar

[110] Zhou T J, Yu R C, Li H M, Wang B. Ocean forcing to changes in global monsoon precipitation over the recent half-century. J Clim, 2008, 21: 3833-3852 CrossRef Google Scholar

[111] Zhou T J, Gong D Y, Li J, Li B. Detecting and understanding the multi-decadal variability of the East Asian Summer Monsoon? Recent progress and state of affairs. Meteorol Z, 2009a, 18: 455-467 CrossRef Google Scholar

[112] Zhou T J, Yu R C, Zhang J, Drange H, Cassou C, Deser C, Hodson D L R, Sanchez-Gomez E, Li J, Keenlyside N, Xin X G, Okumura Y. Why the Western Pacific subtropical high has extended westward since the late 1970s. J Clim, 2009b, 22: 2199-2215 CrossRef Google Scholar

[113] Zhou T J, Song F, Lin R, Chen X, Chen X. 2013. The 2012 North China floods: Explaining an extreme rainfall event in the context of a long-term drying tendency [in “Explaining Extreme Events of 2012 from a Climate Perspective”]. Bull Amer Meteor Soc, 94: S1–S74. Google Scholar

[114] Zhu J L, Liao H, Li J P. Increases in aerosol concentrations over eastern China due to the decadal-scale weakening of the East Asian summer monsoon. Geophys Res Lett, 39: L09809, doi. 2012, : 029/2012GL051428 Google Scholar

  • 图1

    中国大气气溶胶各种化学成分浓度

    修改自Zhang X Y等(2012)

  • 图2

    气溶胶对四季平均(a)和夏季(b)云厚的影响

    修改自Li等(2011a)

  • 图3

    气溶胶对不同含水量的云的降水频率(a)以及降水量(b)的不同影响

    修改自Li等(2011a)

  • 图4

    夏季华县和华山的温差变化趋势(a)、西安和华山的风速变化趋势(b)、华山风速与能见度的相关关系(c)及西安雷暴日变化在不同阶段的变化趋势(d)

    (a) 红色代表日最高气温, 蓝色代表日最低气温, 黑色代表气温日较差; 修改自Yang等(2013b)

  • 图5

    CR-WRF模拟的不同污染情形下的降水概览分布

    深蓝色代表污染大气, 红色代表清洁大气. 修改自Wang等(2013a)

  • 图6

    过去30年(1976~2006年)中国雾发生率(a)及其变化(c)、风(b)和冷空气爆发(d)的变化趋势

    修改自Niu等(2010)

  • 图7

    基于资料和高分辨率模式分析提出的大气污染物影响强风暴系统发展的新理论

    红点表示云滴, 浅蓝色点表示雨滴, 蓝色的标记表示冰晶. 在污染环境中, 对流核使得云中出现更多更小粒径的水凝物, 导致云伸展得更大, 层云(砧状云)消散更慢(冰晶的粒径越小, 降落速度越慢); 因此, 在风暴成熟阶段的云量更大, 云顶更高, 且变得更厚. 图取自Fan等(2013)

  • 图8

    东亚夏季风环流的减弱及与太平洋年代际变率(PDO)位相转换的关系

    (a) 基于NCEP/NCAR再分析资料的标准化的7月份东亚夏季风环流指数(柱状图, 采用郭其蕴(1983)的定义); 绿线是PDO指数(http://jisao.washington.edu/pdo/PDO.latest); (b) 标准化的华北(35°~43°N, 110°~122°E)区域内23个台站的7月份平均降水量(柱状图); 绿线是PDO指数(http://jisao. washington.edu/pdo/PDO.latest); (c) 1951~2012年7月降水的线性趋势(单位mm a-1), 绿色的方格代表华北区域 (35°~43°N, 110°~122°E). 修改自Zhou等(2013)

  • 图9

    不同再分析资料再现的和在不同驱动下模拟的东亚夏季风环流变化

    (a) 基于NCEP/NCAR再分析资料的东亚夏季风环流指数(柱状图)及其线性趋势(点线); (b) 基于ERA-40的东亚夏季风环流指数; (c) 全球历史海温驱动下CAM3模式模拟的东亚夏季风环流指数; (d) 大气成分(温室气体和气溶胶)驱动下CAM3模拟的东亚夏季风指数. 东亚夏季风指数被定义为20°~40°N 和110°~140°E范围内850和200 hPa纬向风切变的标准化序列. 该图表明东亚夏季风环流的减弱主要

  • 图10

    模拟的气溶胶变化对东亚夏季地表风场的影响

    (a) 2000年气溶胶增加时的模拟(修改自Zhang H等(2012)), (b) 未来RCP4.5情景下2000~2100年的气溶胶减少时的模拟(修改自Wang等(2015)1)

    ) (footnote: Wang Z L, Zhang H, Zhang X Y. 2015. Projected response of East Asian summer monsoon to future reductions in emissions of anthropogenic aerosols and their precursors. Clim Dyn, accepted)

  • 图11

    观测和不同外强迫试验中1958~2001年夏季海平面气压(填色; 单位: hPa (44 a)-1)和850 hPa风场(矢量; 单位: m s-1 (44 a)-1)的线性趋势

    (a) 观测, (b) 全强迫试验, (c) 人为强迫试验, (d) 温室气体强迫试验, (e) 自然强迫试验, (f) 气溶胶强迫试验. 图(a)和(b)中的绿色方框代表华北地区(32°~42°N, 105°~122°E). 打点区域表示降水趋势通过了90%的显著性检验. 数值模拟试验是CMIP5的17个耦合模式的集合结果. 图修改自Song等(2014)

  • 图12

    中国东部1958~2001年夏季地表气温线性趋势和华北地区的海平面气压趋势的散点图分布(a)及观测和不同外强迫试验中中国东部地区地表气温趋势(b)

    (a) 中国东部(28°~38°N, 105°~122°E), 华北地区(32°~42°N, 105°~122°E); (b) 东亚夏季风区(0°~50°N, 90°~160°E)平均地表气温趋势已经被扣除. 数值模拟试验是CMIP5的17个耦合模式的集合结果. 修改自Song等(2014)

  • 图13

    东亚夏季风指数标准化时间序列与模拟的1986~2006年中国东部地区夏季平均的近地面PM2.5浓度

    绿色柱状图表示用NCEP/NCAR再分析资料计算的1948~2010年的东亚夏季风指数(EASMI-NCEP); 红色柱状图表示用GEOS-4再分析资料计算的1986~2006年的东亚夏季风指数(EASMI-GEOS); 虚线表示东亚夏季指数的9年滤波曲线. 由图可见, 中国东部地区(110°~125°E, 28°~45°N)夏季平均气溶胶浓度与东亚夏季风强度呈现显著的反位相变化(相关系数为-0.65, 通过了95%显著性检验). 修改自Zhu等(2012)

qqqq

Contact and support