the National Key Research and Development Program(2016YFA0502304,to,H.L.)
the National Natural Science Foundation of China(81825020)
the National Science & Technology Major Project “Key New Drug Creation and Manufacturing Program”
China(2018ZX09711002)
the Fundamental Research Funds for the Central Universities
Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(the,second,phase)
Professor of Chang Jiang Scholars Program(to,W.Z.)
and the Natural Science Foundation of Zhejiang Province(LY15H190007)
We thank Prof. Hua Xie (Shanghai Insitute of Materia Medica, Chinese Academy of Sciences) for expert technical assistance with the target location experiments using confocal microscopy; Prof. Jin Huang (East China University of Science and Technology) for the enzyme inhibition assays and the effect evaluation of NP1024 on degradation of hemoglobin by FP-2; Profs. Huaimin Zhu, Weiqing Pan, Heng Peng, and Weibin Guan (The Secondary Military Medical University) for sharing
The author(s) declare that they have no conflict of interest.
SUPPORTING INFORMATION The supporting information is available online at
[1]
Aneja
B.,
Kumar
B.,
Jairajpuri
M.A.,
Abid
M..
A structure guided drug-discovery approach towards identification of
[2]
Bloor
S.J..
An antimicrobial kaempferol-diacyl-rhamnoside from
[3] Conroy T., Guo J.T., Elias N., Cergol K.M., Gut J., Legac J., Khatoon L., Liu Y., McGowan S., Rosenthal P.J., et al. Synthesis of gallinamide A analogues as potent falcipain inhibitors and antimalarials. J Med Chem, 2014, 57: 10557-10563 CrossRef PubMed Google Scholar
[4] Ettari, R., Bova, F., Zappala, M., Grasso, S., and Micale, N. (2010). Falcipain-2 inhibitors. Med Res Rev 30, 136–167. Google Scholar
[5] Fujita T., Sezik E., Tabata M., Yesilada E., Honda G., Takeda Y., Tanaka T., Takaishi Y.. Traditional medicine in Turkey VII. Folk medicine in middle and west Black Sea regions. Econ Bot, 1995, 49: 406-422 CrossRef Google Scholar
[6]
Hansen
G.,
Heitmann
A.,
Witt
T.,
Li
H.,
Jiang
H.,
Shen
X.,
Heussler
V.T.,
Rennenberg
A.,
Hilgenfeld
R..
Structural basis for the regulation of cysteine-protease activity by a new class of protease inhibitors in
[7]
Hernández-González
J.E.,
Salas-Sarduy
E.,
Hernández Ramírez
L.F.,
Pascual
M.J.,
Álvarez
D.E.,
Pabón
A.,
Leite
V.B.P.,
Pascutti
P.G.,
Valiente
P.A..
Identification of (4-(9H-fluoren-9-yl) piperazin-1-yl) methanone derivatives as falcipain 2 inhibitors active against
[8]
Hogg
T.,
Nagarajan
K.,
Herzberg
S.,
Chen
L.,
Shen
X.,
Jiang
H.,
Wecke
M.,
Blohmke
C.,
Hilgenfeld
R.,
Schmidt
C.L..
Structural and functional characterization of falcipain-2, a hemoglobinase from the malarial parasite
[9] Jain M., Khan S.I., Tekwani B.L., Jacob M.R., Singh S., Singh P.P., Jain R.. Synthesis, antimalarial, antileishmanial, and antimicrobial activities of some 8-quinolinamine analogues. Bioorg Med Chem, 2005, 13: 4458-4466 CrossRef PubMed Google Scholar
[10] Kerr I.D., Lee J.H., Pandey K.C., Harrison A., Sajid M., Rosenthal P.J., Brinen L.S.. Structures of falcipain-2 and falcipain-3 bound to small molecule inhibitors: implications for substrate specificity. J Med Chem, 2009, 52: 852-857 CrossRef PubMed Google Scholar
[11] Koehn F.E., Carter G.T.. The evolving role of natural products in drug discovery. Nat Rev Drug Discov, 2005, 4: 206-220 CrossRef PubMed Google Scholar
[12] Landier J., Parker D.M., Thu A.M., Carrara V.I., Lwin K.M., Bonnington C.A., Pukrittayakamee S., Delmas G., Nosten F.H.. The role of early detection and treatment in malaria elimination. Malar J, 2016, 15: 363 CrossRef PubMed Google Scholar
[13]
Lew
V.L.,
Tiffert
T.,
Ginsburg
H..
Excess hemoglobin digestion and the osmotic stability of
[14] Li H., Huang J., Chen L., Liu X., Chen T., Zhu J., Lu W., Shen X., Li J., Hilgenfeld R., et al. Identification of novel falcipain-2 inhibitors as potential antimalarial agents through structure-based virtual screening. J Med Chem, 2009, 52: 4936-4940 CrossRef PubMed Google Scholar
[15]
Liu
W.,
Li
Y.,
Learn
G.H.,
Rudicell
R.S.,
Robertson
J.D.,
Keele
B.F.,
Ndjango
J.B.N.,
Sanz
C.M.,
Morgan
D.B.,
Locatelli
S., et al.
Origin of the human malaria parasite
[16]
Hinrichs
D.J.,
Makler
M.T..
Measurement of the lactate dehydrogenase activity of
[17] Marco M., Miguel Coteron J.. Falcipain inhibition as a promising antimalarial target. Curr Top Med Chem, 2012, 12: 408-444 CrossRef PubMed Google Scholar
[18]
Mojab, F. (2012). Antimalarial natural products: a review. Avicenna J Phytomed
[19]
Muganga, R., Angenot, L., Tits, M., and Frederich, M. (2010). Antiplasmodial and cytotoxic activities of Rwandan medicinal plants used in the treatment of malaria. J Ethnopharmacol
[20] Mustafa J., Khan S.I., Ma G., Walker L.A., Khan I.A.. Synthesis and anticancer activities of fatty acid analogs of podophyllotoxin. Lipids, 2004, 39: 167-172 CrossRef PubMed Google Scholar
[21]
Mustofa, Sholikhah, E.N., and Wahyuono, S. (2007).
[22] Musyoka T.M., Kanzi A.M., Lobb K.A., Tastan Bishop Ö.. Analysis of non-peptidic compounds as potential malarial inhibitors against Plasmodial cysteine proteases via integrated virtual screening workflow. J Biomol Struct Dyn, 2016a, 34: 2084-2101 CrossRef PubMed Google Scholar
[23] Musyoka T.M., Kanzi A.M., Lobb K.A., Tastan Bishop Ö.. Structure based docking and molecular dynamic studies of plasmodial cysteine proteases against a South African natural compound and its analogs. Sci Rep, 2016b, 6: 23690 CrossRef PubMed Google Scholar
[24]
Pandey
K.C.,
Barkan
D.T.,
Sali
A.,
Rosenthal
P.J..
Regulatory elements within the prodomain of falcipain-2, a cysteine protease of the malaria parasite
[25]
Pandey
K.C.,
Wang
S.X.,
Sijwali
P.S.,
Lau
A.L.,
McKerrow
J.H.,
Rosenthal
P.J..
The
[26] Repetto G., del Peso A., Zurita J.L.. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc, 2008, 3: 1125-1131 CrossRef PubMed Google Scholar
[27] Schulz F., Gelhaus C., Degel B., Vicik R., Heppner S., Breuning A., Leippe M., Gut J., Rosenthal P.J., Schirmeister T.. Screening of protease inhibitors as antiplasmodial agents. Part I: aziridines and epoxides. ChemMedChem, 2007, 2: 1214-1224 CrossRef PubMed Google Scholar
[28]
Shenai
B.R.,
Sijwali
P.S.,
Singh
A.,
Rosenthal
P.J..
Characterization of native and recombinant falcipain-2, a principal trophozoite cysteine protease and essential hemoglobinase of
[29]
Stoye
A.,
Juillard
A.,
Tang
A.H.,
Legac
J.,
Gut
J.,
White
K.L.,
Charman
S.A.,
Rosenthal
P.J.,
Grau
G.E.R.,
Hunt
N.H., et al.
Falcipain inhibitors based on the natural product gallinamide A are potent
[30]
Thu
A.M.,
Phyo
A.P.,
Landier
J.,
Parker
D.M.,
Nosten
F.H..
Combating multidrug-resistant
[31] Trager W., Jensen J.B.. Human malaria parasites in continuous culture. J Parasitol, 2005, 91: 484-486 CrossRef Google Scholar
[32] Tu Y.. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat Med, 2011, 17: 1217-1220 CrossRef PubMed Google Scholar
[33] Wang L., Zhang S., Zhu J., Zhu L., Liu X., Shan L., Huang J., Zhang W., Li H.. Identification of diverse natural products as falcipain-2 inhibitors through structure-based virtual screening. Bioorg Med Chem Lett, 2014, 24: 1261-1264 CrossRef PubMed Google Scholar
[34] WHO. (2018). World Malaria Report 2018 (Switzerland: World Health Organization). Google Scholar
[35] Zhu J., Chen T., Chen L., Lu W., Che P., Huang J., Li H., Li J., Jiang H.. 2-Amido-3-(1H-indol-3-yl)-N-substitued-propanamides as a new class of falcipain-2 inhibitors. 1. design, synthesis, biological evaluation and binding model studies. Molecules, 2009, 14: 494-508 CrossRef PubMed Google Scholar
Figure 1
(Color online) Inhibitory activities of NP1024. A, Chemical structure of compound NP1024 and its inhibitory activities against FP-2 and parasite growth
Figure 2
(Color online)
Figure 3
Analysis of the interaction between NP1024 and FP-2. A, Analysis of the binding affinity between FP-2 and NP1024 by surface plasmon resonance. The adjusted (Fc2-Fc1) sensorgrams are shown (left); the binding affinity was obtained using the steady-state model-fitting (right). B, Proposed binding mode of NP1024 in the active site of FP-2. The surface of subsites S1, S1’, S2 and S3, and the catalytic Cys42 are colored in green, purple, yellow, pink and orange, respectively (left, PDB code: 3BPF), and the key residues are shown as sticks in the same color as the corresponding subsite (right). NP1024 is presented as ball-and-sticks with carbon atoms in gray and oxygen atoms in red. Hydrogen bonds are displayed as black dashed lines.
Figure 4
Colocalization of NP1024 and FP-2 in malaria parasite-infected erythrocytes
Figure 5
Target localization of NP1024 in erythrocytes of