SCIENCE CHINA Life Sciences, Volume 62 , Issue 9 : 1178-1193(2019) https://doi.org/10.1007/s11427-018-9456-x

Alterations in intestinal microbiota of colorectal cancer patients receiving radical surgery combined with adjuvant CapeOx therapy

More info
  • ReceivedSep 6, 2018
  • AcceptedDec 12, 2018
  • PublishedFeb 19, 2019



This work was supported by the National Natural Science Foundation of China (81230057, 81372615, 81472262 and 81200264), the Emerging Cutting-Edge Technology Joint Research Projects of Shanghai (SHDC12012106) and Tongji University Subject Pilot Program (162385), Lijieshou Intestinal Barrier Foundation (LJS-201701), Specialized Research Fund for the Combine Traditional Chinese and Western Medicine in General Hospital of Shanghai (ZHYY-ZXYJHZX-1-201704).

Interest statement

The author(s) declare that they have no conflict of interest.

Supplementary data


Figure S1 Community richness and diversity index of the preoperative (Group B), postoperative (Group A0) and post-chemotherapy (Group A1–5) groups. A1–5 represent samples collected after the first to fifth cycles of chemotherapy, respectively.

Figure S2 Comparison of gut microbiota between preoperative (Group B) and post-chemotherapy (Group A1–5) groups. The dominant phyla (A) and genera (B) in these two groups. (C) Wilcoxon rank-sum test results in the two groups. A1–5 represent samples collected after the first to fifth cycles of chemotherapy, respectively.

Figure S3 The relative abundance of the Clusters of Orthologous Groups of proteins (COG) for predicted genes.

The supporting information is available online at http://life.scichina.com and http://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


[1] André T., Boni C., Mounedji-Boudiaf L., Navarro M., Tabernero J., Hickish T., Topham C., Zaninelli M., Clingan P., Bridgewater J., et al. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med, 2004, 3502343-2351 CrossRef PubMed Google Scholar

[2] Bloom S.M., Bijanki V.N., Nava G.M., Sun L., Malvin N.P., Donermeyer D.L., Dunne Jr. W.M., Allen P.M., Stappenbeck T.S.. Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease. Cell Host Microbe, 2011, 9390-403 CrossRef PubMed Google Scholar

[3] Borchers A.T., Selmi C., Meyers F.J., Keen C.L., Gershwin M.E.. Probiotics and immunity. J Gastroenterol, 2009, 4426-46 CrossRef PubMed Google Scholar

[4] Bruneau A., Baylatry M.T., Joly A.C., Sokol H.. Le microbiote intestinal: quels impacts sur la carcinogenèse et le traitement du cancer colorectal?. Bull Cancer, 2018, 10570-80 CrossRef PubMed Google Scholar

[5] Bullman S., Pedamallu C.S., Sicinska E., Clancy T.E., Zhang X., Cai D., Neuberg D., Huang K., Guevara F., Nelson T., et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science, 2017, 3581443-1448 CrossRef PubMed ADS Google Scholar

[6] Cersosimo R.J.. Management of advanced colorectal cancer, Part 1. Am J Health-Syst Pharmacy, 2013, 70395-406 CrossRef PubMed Google Scholar

[7] Chen J., Wright K., Davis J.M., Jeraldo P., Marietta E.V., Murray J., Nelson H., Matteson E.L., Taneja V.. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med, 2016, 843 CrossRef PubMed Google Scholar

[8] Cole J.R., Wang Q., Cardenas E., Fish J., Chai B., Farris R.J., Kulam-Syed-Mohideen A.S., McGarrell D.M., Marsh T., Garrity G.M., et al. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res, 2009, 37D141-D145 CrossRef PubMed Google Scholar

[9] Cui C., Shen C.J., Jia G., Wang K.N.. Effect of dietary Bacillus subtilis on proportion of Bacteroidetes and Firmicutes in swine intestine and lipid metabolism. Genet Mol Res, 2013, 121766-1776 CrossRef PubMed Google Scholar

[10] Cunningham D., Morgan R.J., Mills P.R., Nelson L.M., Toner P.G., Soukop M., McArdle C.S., Russell R.I.. Functional and structural changes of the human proximal small intestine after cytotoxic therapy. J Clin Pathol, 1985, 38265-270 CrossRef Google Scholar

[11] Danno K., Hata T., Tamai K., Fujie Y., Ide Y., Kim H.M., Ohnishi T., Morita S., Yoshioka S., Kudo T., et al. Interim analysis of a phase II trial evaluating the safety and efficacy of capecitabine plus oxaliplatin (XELOX) as adjuvant therapy in Japanese patients with operated stage III colon cancer. Cancer Chemother Pharmacol, 2017, 80777-785 CrossRef PubMed Google Scholar

[12] DeSantis T.Z., Hugenholtz P., Larsen N., Rojas M., Brodie E.L., Keller K., Huber T., Dalevi D., Hu P., Andersen G.L.. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol, 2006, 725069-5072 CrossRef PubMed Google Scholar

[13] Drzewiecka D., Lewandowska G.. Vaccines in prophylaxis of urinary tract infections caused by the bacteria from the genus Proteus. Postepy Hig Med Dosw, 2016, 701032-1043 CrossRef Google Scholar

[14] Edgar R.C.. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods, 2013, 10996-998 CrossRef PubMed Google Scholar

[15] Erlanger D., Assous M.V., Wiener-Well Y., Yinnon A.M., Ben-Chetrit E.. Clinical manifestations, risk factors and prognosis of patients with Morganella morganii sepsis. J Microbiol Immunol Infection, 2017, CrossRef PubMed Google Scholar

[16] Fan W., Qi Y., Wang R., Xu C., Zhao N., Xu F.J.. Calcium carbonate-methylene blue nanohybrids for photodynamic therapy and ultrasound imaging. Sci China Life Sci, 2018, 61483-491 CrossRef PubMed Google Scholar

[17] Fish J.A., Chai B., Wang Q., Sun Y., Brown C.T., Tiedje J.M., Cole J.R.. FunGene: the functional gene pipeline and repository. Front Microbiol, 2013, 4291 CrossRef Google Scholar

[18] Flórez A.B., Sierra M., Ruas-Madiedo P., Mayo B.. Susceptibility of lactic acid bacteria, bifidobacteria and other bacteria of intestinal origin to chemotherapeutic agents. Int J Antimicrob Agents, 2016, 48547-550 CrossRef PubMed Google Scholar

[19] Gao R., Zhu C., Li H., Yin M., Pan C., Huang L., Kong C., Wang X., Zhang Y., Qu S., et al. Dysbiosis signatures of gut microbiota along the sequence from healthy, young patients to those with overweight and obesity. Obesity, 2018, 26351-361 CrossRef PubMed Google Scholar

[20] Gröbner S., Fritz E., Schoch F., Schaller M., Berger A.C., Bitzer M., Autenrieth I.B.. Lysozyme activates Enterococcus faecium to induce necrotic cell death in macrophages. Cell Mol Life Sci, 2010, 673331-3344 CrossRef PubMed Google Scholar

[21] Grothey A., Venook A.P.. Optimizing adjuvant therapy for localized colon cancer and treatment selection in advanced colorectal cancer. J Natl Compr Canc Netw, 2018, 16611-615 CrossRef PubMed Google Scholar

[22] Hill D.A., Hoffmann C., Abt M.C., Du Y., Kobuley D., Kirn T.J., Bushman F.D., Artis D.. Metagenomic analyses reveal antibiotic-induced temporal and spatial changes in intestinal microbiota with associated alterations in immune cell homeostasis. Mucosal Immunol, 2010, 3148-158 CrossRef PubMed Google Scholar

[23] Hooper L.V., Gordon J.I.. Commensal host-bacterial relationships in the gut. Science, 2001, 2921115-1118 CrossRef ADS Google Scholar

[24] Huttenhower C., Knight R., Brown C.T., Caporaso J.G., Clemente J.C., Gevers D., Franzosa E.A., Kelley S.T., Knights D., Ley R.E., et al. Advancing the microbiome research community. Cell, 2014, 159227-230 CrossRef PubMed Google Scholar

[25] Kamboj K., Vasquez A., Balada-Llasat J.M.. Identification and significance of Weissella species infections. Front Microbiol, 2015, 6670-672 CrossRef Google Scholar

[26] Kõljalg U., Nilsson R.H., Abarenkov K., Tedersoo L., Taylor A.F.S., Bahram M., Bates S.T., Bruns T.D., Bengtsson-Palme J., Callaghan T.M., et al. Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol, 2013, 225271-5277 CrossRef PubMed Google Scholar

[27] Kwong T.N.Y., Wang X., Nakatsu G., Chow T.C., Tipoe T., Dai R.Z.W., Tsoi K.K.K., Wong M.C.S., Tse G., Chan M.T.V., et al. Association between bacteremia from specific microbes and subsequent diagnosis of colorectal cancer. Gastroenterology, 2018, 155383-390.e8 CrossRef PubMed Google Scholar

[28] Lassen K., Soop M., Nygren J., Cox P.B.W., Hendry P.O., Spies C., von Meyenfeldt M.F., Fearon K.C.H., Revhaug A., Norderval S., et al. Consensus review of optimal perioperative care in colorectal surgery. Arch Surg, 2009, 144961-969 CrossRef PubMed Google Scholar

[29] Le B., Yang S.H.. Efficacy of Lactobacillus plantarum in prevention of inflammatory bowel disease. Toxicol Rep, 2018, 5314-317 CrossRef PubMed Google Scholar

[30] Li M., Wu Y., Hu Y., Zhao L., Zhang C.. Initial gut microbiota structure affects sensitivity to DSS-induced colitis in a mouse model. Sci China Life Sci, 2018, 61762-769 CrossRef PubMed Google Scholar

[31] Liu Z., Qin H., Yang Z., Xia Y., Liu W., Yang J., Jiang Y., Zhang H., Yang Z., Wang Y., et al. Randomised clinical trial: the effects of perioperative probiotic treatment on barrier function and post-operative infectious complications in colorectal cancer surgery - a double-blind study. Alimentary Pharmacol Therapeutics, 2011, 3350-63 CrossRef PubMed Google Scholar

[32] Lupp, C., Robertson, M.L., Wickham, M.E., Sekirov, I., Champion, O.L., Gaynor, E.C., and Finlay, B.B. (2007). Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2, 204. Google Scholar

[33] Marquet P., Duncan S.H., Chassard C., Bernalier-Donadille A., Flint H.J.. Lactate has the potential to promote hydrogen sulphide formation in the human colon. FEMS Microbiol Lett, 2010, 299128-134 CrossRef PubMed Google Scholar

[34] Miquel S., Leclerc M., Martin R., Chain F., Lenoir M., Raguideau S., Hudault S., Bridonneau C., Northen T., Bowen B., et al. Identification of Metabolic Signatures Linked to Anti-Inflammatory Effects of Faecalibacterium prausnitzii. mBio, 2015, 6 CrossRef PubMed Google Scholar

[35] Montassier E., Batard E., Massart S., Gastinne T., Carton T., Caillon J., Le Fresne S., Caroff N., Hardouin J.B., Moreau P., et al. 16S rRNA gene pyrosequencing reveals shift in patient faecal microbiota during high-dose chemotherapy as conditioning regimen for bone marrow transplantation. Microb Ecol, 2014, 67690-699 CrossRef PubMed Google Scholar

[36] Montassier E., Gastinne T., Vangay P., Al-Ghalith G.A., Bruley des Varannes S., Massart S., Moreau P., Potel G., de La Cochetière M.F., Batard E., et al. Chemotherapy-driven dysbiosis in the intestinal microbiome. Aliment Pharmacol Ther, 2015, 42515-528 CrossRef PubMed Google Scholar

[37] Nagasaka T., Mishima H., Sawaki A., Shimokawa M., Inukai M., Shinozaki K., Tanioka H., Nasu J., Nishina T., Hazama S., et al. Protocol of a randomised phase III clinical trial of sequential capecitabine or 5-fluorouracil plus bevacizumab (Cape/5-FU-Bmab) to capecitabine or 5-fluorouracil plus oxaliplatin plus bevacizumab (CapeOX/mFOLFOX6-Bmab) versus combination CapeOX/mFOLFOX6-Bmab in advanced colorectal cancer: the C-cubed (C3) study. BMJ Open, 2016, 6e011454 CrossRef PubMed Google Scholar

[38] Neish A.S.. Microbes in gastrointestinal health and disease. Gastroenterology, 2009, 13665-80 CrossRef PubMed Google Scholar

[39] Nyhlén, A., Ljungberg, B., Nilsson-Ehle, I., and Nord, C.E. (2002). Impact of combinations of antineoplastic drugs on intestinal microflora in 9 patients with leukaemia. Scand J Infect Dis 34, 17–21. Google Scholar

[40] Ohigashi S., Sudo K., Kobayashi D., Takahashi T., Nomoto K., Onodera H.. Significant changes in the intestinal environment after surgery in patients with colorectal cancer. J Gastrointest Surg, 2013, 171657-1664 CrossRef PubMed Google Scholar

[41] Ottosson F., Brunkwall L., Ericson U., Nilsson P.M., Almgren P., Fernandez C., Melander O., Orho-Melander M.. Connection between BMI-related plasma metabolite profile and gut microbiota. J Clini Endocrinol Metab, 2018, 1031491-1501 CrossRef PubMed Google Scholar

[42] Ponziani F.R., Bhoori S., Castelli C., Putignani L., Rivoltini L., Del Chierico F., Sanguinetti M., Morelli D., Paroni Sterbini F., Petito V., et al. Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in nonalcoholic fatty liver disease. Hepatology, 2019, 69107-120 CrossRef PubMed Google Scholar

[43] Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F.O.. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res, 2013, 41D590-D596 CrossRef PubMed Google Scholar

[44] Schwiertz A., Taras D., Schäfer K., Beijer S., Bos N.A., Donus C., Hardt P.D.. Microbiota and SCFA in lean and overweight healthy subjects. Obesity, 2010, 18190-195 CrossRef PubMed Google Scholar

[45] Seo B., Yoo J.E., Lee Y.M., Ko G.P.. Sellimonas intestinalis gen. nov., sp. nov., isolated from human faeces. Int J Systatic Evolary Microbiol, 2016, 52951-956 CrossRef PubMed Google Scholar

[46] Shen S., Lim G., You Z., Ding W., Huang P., Ran C., Doheny J., Caravan P., Tate S., Hu K., et al. Gut microbiota is critical for the induction of chemotherapy-induced pain. Nat Neurosci, 2017, 201213-1216 CrossRef PubMed Google Scholar

[47] Siegel R.L., Miller K.D., Fedewa S.A., Ahnen D.J., Meester R.G.S., Barzi A., Jemal A.. Colorectal cancer statistics, 2017. CA Cancer J Clin, 2017a, 67177-193 CrossRef PubMed Google Scholar

[48] Siegel R.L., Miller K.D., Jemal A.. Cancer statistics, 2017. CA Cancer J Clin, 2017b, 677-30 CrossRef PubMed Google Scholar

[49] Strati F., Cavalieri D., Albanese D., De Felice C., Donati C., Hayek J., Jousson O., Leoncini S., Renzi D., Calabrò A., et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome, 2017, 524 CrossRef PubMed Google Scholar

[50] Stringer A.M., Gibson R.J., Logan R.M., Bowen J.M., Yeoh A.S.J., Hamilton J., Keefe D.M.K.. Gastrointestinal microflora and mucins may play a critical role in the development of 5-fluorouracil-induced gastrointestinal mucositis. Exp Biol Med (Maywood), 2009, 234430-441 CrossRef PubMed Google Scholar

[51] Stringer, A.M., Gibson, R.J., Logan, R.M., Bowen, J.M., Yeoh, A.S., and Keefe, D.M. (2008). Faecal microflora and beta-glucuronidase expression are altered in an irinotecan-induced diarrhea model in rats. Cancer Biol Ther 7, 1919–1925. Google Scholar

[52] Sugawara G., Nagino M., Nishio H., Ebata T., Takagi K., Asahara T., Nomoto K., Nimura Y.. Perioperative synbiotic treatment to prevent postoperative infectious complications in biliary cancer surgery. Ann Surgery, 2006, 244706-714 CrossRef PubMed Google Scholar

[53] Thorkildsen L.T., Nwosu F.C., Avershina E., Ricanek P., Perminow G., Brackmann S., Vatn M.H., Rudi K.. Dominant fecal microbiota in newly diagnosed untreated inflammatory bowel disease patients. Gastroenterol Res Pract, 2013, 2013(170)1-13 CrossRef PubMed Google Scholar

[54] Touchefeu Y., Montassier E., Nieman K., Gastinne T., Potel G., Bruley des Varannes S., Le Vacon F., de La Cochetière M.F.. Systematic review: the role of the gut microbiota in chemotherapy- or radiation-induced gastrointestinal mucositis—current evidence and potential clinical applications. Aliment Pharmacol Ther, 2014, 22 CrossRef PubMed Google Scholar

[55] Turnbaugh P.J., Ley R.E., Mahowald M.A., Magrini V., Mardis E.R., Gordon J.I.. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006, 4441027-1031 CrossRef PubMed Google Scholar

[56] van Vliet M.J., Tissing W.J.E., Dun C.A.J., Meessen N.E.L., Kamps W.A., de Bont E.S.J.M., Harmsen H.J.M.. Chemotherapy treatment in pediatric patients with acute myeloid leukemia receiving antimicrobial prophylaxis leads to a relative increase of colonization with potentially pathogenic bacteria in the gut. Clin Infect Dis, 2009, 49262-270 CrossRef PubMed Google Scholar

[57] Vanlancker, E., Vanhoecke, B., Stringer, A., and Van de Wiele, T. (2017). 5-Fluorouracil and irinotecan (SN-38) have limited impact on colon microbial functionality and composition in vitro. Peer J 5, e4017. Google Scholar

[58] Veiga P., Pons N., Agrawal A., Oozeer R., Guyonnet D., Brazeilles R., Faurie J.M., van Hylckama Vlieg J.E.T., Houghton L.A., Whorwell P.J., et al. Changes of the human gut microbiome induced by a fermented milk product. Sci Rep, 2014, 46328 CrossRef PubMed Google Scholar

[59] Wang H., Bastian S.E.P., Howarth G.S.. Newly developed synbiotics and the chemotherapy-damaged gut. J Evid Based Compl Altern Med, 2013, 18198-208 CrossRef Google Scholar

[60] Wang X., Allen T.D., May R.J., Lightfoot S., Houchen C.W., Huycke M.M.. Enterococcus faecalis induces aneuploidy and tetraploidy in colonic epithelial cells through a bystander effect. Cancer Res, 2008, 689909-9917 CrossRef PubMed Google Scholar

[61] Woerther P.L., Antoun S., Chachaty E., Merad M.. Eggerthella lenta bacteremia in solid tumor cancer patients: Pathogen or witness of frailty?. Anaerobe, 2017, 4770-72 CrossRef PubMed Google Scholar

[62] Workneh M., Wang F., Romagnoli M., Simner P.J., Carroll K.. Bypass graft infection and bacteremia caused by Anaerostipes caccae: First report of human infection caused by a recently described gut anaerobe. Anaerobe, 2016, 4298-100 CrossRef PubMed Google Scholar

[63] Yang J., Liu K., Qu J., Wang X.. The changes induced by cyclophosphamide in intestinal barrier and microflora in mice. Eur J Pharmacol, 2013, 714120-124 CrossRef PubMed Google Scholar

[64] Yang Y., Wang X., Huycke T., Moore D.R., Lightfoot S.A., Huycke M.M.. Colon macrophages polarized by commensal bacteria cause colitis and cancer through the bystander effect. Transl Oncol, 2013, 6596-IN8 CrossRef Google Scholar

[65] Zhang Y., Kong W., Jiang J.. Prevention and treatment of cancer targeting chronic inflammation: research progress, potential agents, clinical studies and mechanisms. Sci China Life Sci, 2017, 60601-616 CrossRef PubMed Google Scholar

[66] Yu T.C., Guo F., Yu Y., Sun T., Ma D., Han J., Qian Y., Kryczek I., Sun D., Nagarsheth N., et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell, 2017, 170548-563.e16 CrossRef PubMed Google Scholar

[67] Zhang Q., Wu Y., Wang J., Wu G., Long W., Xue Z., Wang L., Zhang X., Pang X., Zhao Y., et al. Accelerated dysbiosis of gut microbiota during aggravation of DSS-induced colitis by a butyrate-producing bacterium. Sci Rep, 2016, 627572 CrossRef PubMed ADS Google Scholar

  • Figure 1

    Comparison of gut microbiota between preoperative (Group B) and postoperative (Group A0) colorectal cancer patients. The dominant phyla (A) and genera (B) in these two groups. C, Cladogram of linear discriminant analysis (LDA) coupled with effective size measurement showing differentially abundant genera. D, Histogram of LDA scores for differentially abundant genera. E, Plot of principal co-ordinate analysis (PCoA) scores based on the relative abundance of operational taxonomic units (OTUs; 97% similarity level). Each symbol represents a sample.

  • Figure 2

    Comparison of gut microbiota between pre-chemotherapy (Group A0) and five cycles (groups A1–5) of chemotherapy groups. A, Plot of unweighted UniFrac Principal Co-ordinate Analysis (PCoA) scores based on the relative abundance of operational taxonomic units (OTUs; ≥97% similarity level). Each symbol represents a sample. B, Analysis of similarity within and between Group A0 and groups A1–5. C, Genus level heatmap based on unweighted UniFrac distance of all the samples in the preoperative (Group B), Group A0, and groups A1–5. The (D) dominant genera and (E) phyla in the seven groups and their relative abundance are listed. F, The top 30 prevalent bacterial genera identified in the seven groups with relative abundance denoted by circle size and colors representing different phyla.

  • Figure 3

    (Color online) Real-time quantitative polymerase chain reaction (PCR) for Dorea, Ruminococcaceae_UCG−010, Streptococcus, Enterobacteriaceae_unclassified, Prevotella_9, Mogibacterium, Roseburia, Bacteroides, Butyricicoccus, Enterococcus, Veillonella, Lactobacillus, and Parabacteroides. Groups included the pre-surgery Group B, pre-chemotherapy Group A0, and groups A1–5 during stages of chemotherapy. *, P<0.05.

  • Figure 4

    The predicted function and network construction of microbiota in preoperative (Group B), pre-chemotherapy (Group A0) and five cycles of chemotherapy (groups A1–5). A, Predicted gene functions in preoperative and postoperative groups in the L2 categories. Predicted gene functions in pre-chemotherapy and the (B) first, (C) fourth, and (D) fifth cycles of chemotherapy in the L3 categories. E, Co-occurrence networks of the top 50 bacterial genera in the seven groups. Solid and dotted lines indicate positive and negative correlations, respectively.

  • Table 1   Clinical characteristics of colorectal cancer patients (mean±SD) in the present study


    Preoperative group

    Postoperative group

    Chemotherapy group





    Age (years)




    BMI (kg m–2)




    TNM stage (%)*


    6 (31.58)

    3 (30.00)

    13 (28.89)

    III and IV

    13 (68.42)

    7 (70.00)

    32 (71.11)

    Tumor site (%)

    Ascending colon

    1 (5.26)

    2 (20.00)

    8 (17.78)

    Transverse colon

    1 (5.26)

    0 (0.00)

    1 (2.22)

    Descending colon

    2 (10.53)

    2 (20.00)

    3 (6.67)

    Sigmoid colon

    5 (26.32)

    2 (20.00)

    18 (40.00)


    10 (52.63)

    4 (40.00)

    15 (33.33)

    BMI, body mass index; SD, standard deviation; TNM, tumor, lymph node, and metastasis; GI, gastrointestinal. *, TNM staging was based on the standards of the American Joint Committee on Cancer.


Contact and support