logo

SCIENCE CHINA Chemistry, Volume 64 , Issue 10 : 1614-1629(2021) https://doi.org/10.1007/s11426-021-1052-7

Fluoroalkyl N-sulfonyl hydrazones: An efficient reagent for the synthesis of fluoroalkylated compounds

More info
  • ReceivedMay 10, 2021
  • AcceptedJun 16, 2021
  • PublishedAug 31, 2021

Abstract


Funded by

the National Natural Science Foundation of China(21871043,21961130376)

Department of Science and Technology of Jilin Province(20180101185JC,20190701012GH,20200801065GH)

and the Fundamental Research Funds for the Central Universities(2412019ZD001,2412019FZ006)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21871043, 21961130376), Department of Science and Technology of Jilin Province (20180101185JC, 20190701012GH, 20200801065GH), and the Fundamental Research Funds for the Central Universities (2412019ZD001, 2412019FZ006).


Interest statement

The authors declare no conflict of interest.


References

[1] Banks RE, Smart BE, Tatlow JC. Organofluorine Chemistry: Principles and Commercial Applications. New York: Springer, 1994. Google Scholar

[2] Hiyama T. Organofluorine Compounds: Chemistry and Applications. Berlin, Heidelberg: Springer, 2000. Google Scholar

[3] Okazoe T. Proc Jpn Acad Ser B-Phys Biol Sci, 2009, 85: 276-289 CrossRef PubMed ADS Google Scholar

[4] Zhu Y, Han J, Wang J, Shibata N, Sodeoka M, Soloshonok VA, Coelho JAS, Toste FD. Chem Rev, 2018, 118: 3887-3964 CrossRef PubMed Google Scholar

[5] Barata-Vallejo S, Cooke MV, Postigo A. ACS Catal, 2018, 8: 7287-7307 CrossRef Google Scholar

[6] Ni C, Hu J. Chem Soc Rev, 2016, 45: 5441-5454 CrossRef PubMed Google Scholar

[7] Egami H, Sodeoka M. Angew Chem Int Ed, 2014, 53: 8294-8308 CrossRef PubMed Google Scholar

[8] Bizet V, Kowalczyk R, Bolm C. Chem Soc Rev, 2014, 43: 2426-2438 CrossRef PubMed Google Scholar

[9] Liang T, Neumann CN, Ritter T. Angew Chem Int Ed, 2013, 52: 8214-8264 CrossRef PubMed Google Scholar

[10] Prakash GKS, Yudin AK. Chem Rev, 1997, 97: 757-786 CrossRef PubMed Google Scholar

[11] Zafrani Y, Sod-Moriah G, Yeffet D, Berliner A, Amir D, Marciano D, Elias S, Katalan S, Ashkenazi N, Madmon M, Gershonov E, Saphier S. J Med Chem, 2019, 62: 5628-5637 CrossRef PubMed Google Scholar

[12] Chambers RD. Fluorine in Organic Chemistry. Oxford: Blackwell, 2004. Google Scholar

[13] Kirsch P. Modern Fluoroorganic Chemistry. Synthesis, Reactivity, Applications. 2nd ed. Weinheim: Wiley-VCH, 2013. Google Scholar

[14] Uneyama K. Organofluorine Chemistry. Oxford: Blackwell, 2006. Google Scholar

[15] Ni C, Hu M, Hu J. Chem Rev, 2015, 115: 765-825 CrossRef PubMed Google Scholar

[16] Lundgren RJ, Stradiotto M. Angew Chem Int Ed, 2010, 49: 9322-9324 CrossRef PubMed Google Scholar

[17] Macé Y, Magnier E. Eur J Org Chem, 2012, 2012(13): 2479-2494 CrossRef Google Scholar

[18] Toulgoat F, Billard T. Chem, 2017, 2: 327-329 CrossRef Google Scholar

[19] Gilman H, Jones RG. J Am Chem Soc, 1943, 65: 1458-1460 CrossRef Google Scholar

[20] Mertens L, Koenigs RM. Org Biomol Chem, 2016, 14: 10547-10556 CrossRef PubMed Google Scholar

[21] Mykhailiuk PK, Koenigs RM. Chem Eur J, 2019, 25: 6053-6063 CrossRef PubMed Google Scholar

[22] Mykhailiuk PK. Chem Rev, 2020, 120: 12718-12755 CrossRef PubMed Google Scholar

[23] Fields R, Tomlinson JP. J Fluorine Chem, 1979, 13: 147-158 CrossRef Google Scholar

[24] Fields R, Haszeldine RN. J Chem Soc, 1964, : 1881-1889 CrossRef Google Scholar

[25] Wang X, Xu Y, Deng Y, Zhou Y, Feng J, Ji G, Zhang Y, Wang J. Chem Eur J, 2014, 20: 961-965 CrossRef PubMed Google Scholar

[26] Jiménez-Aquino A, Vega JA, Trabanco AA, Valdés C. Adv Synth Catal, 2014, 356: 1079-1084 CrossRef Google Scholar

[27] Emer E, Twilton J, Tredwell M, Calderwood S, Collier TL, Liégault B, Taillefer M, Gouverneur V. Org Lett, 2014, 16: 6004-6007 CrossRef PubMed Google Scholar

[28] Zhang Z, Feng J, Xu Y, Zhang S, Ye Y, Li T, Wang X, Chen J, Zhang Y, Wang J. Synlett, 2015, 26: 59-62 CrossRef Google Scholar

[29] Zhang Z, Zhou Q, Yu W, Li T, Wu G, Zhang Y, Wang J. Org Lett, 2015, 17: 2474-2477 CrossRef PubMed Google Scholar

[30] Bott K. Chem Ber, 1975, 108: 402-419 CrossRef Google Scholar

[31] Shi G, Xu Y. J Fluorine Chem, 1990, 46: 173-178 CrossRef Google Scholar

[32] Jin F, Xu Y, Ma Y. Tetrahedron Lett, 1992, 33: 6161-6164 CrossRef Google Scholar

[33] Zhang X, Ng R, Lanter, J, Sui Z. Synth Commun, 2007, 37: 1437-1444 CrossRef Google Scholar

[34] Zhang X, Li X, Allan GF, Sbriscia T, Linton O, Lundeen SG, Sui Z. J Med Chem, 2007, 50: 3857-3869 CrossRef PubMed Google Scholar

[35] Zhang X, Li X, Allan GF, Sbriscia T, Linton O, Lundeen SG, Sui Z. Bioorg Med Chem Lett, 2007, 17: 439-443 CrossRef PubMed Google Scholar

[36] Zhang X, Liu Z, Yang X, Dong Y, Virelli M, Zanoni G, Anderson EA, Bi X. Nat Commun, 2019, 10: 284-292 CrossRef PubMed ADS Google Scholar

[37] Mykhailiuk PK. Chem Rev, 2021, 121: 1670-1715 CrossRef PubMed Google Scholar

[38] Kumar S, Bawa S, Drabu S, Kumar R, Gupta H. Recent Pat Antiinfect Drug Discov, 2009, 4: 154-163 CrossRef PubMed Google Scholar

[39] Wang H, Ning Y, Sun Y, Sivaguru P, Bi X. Org Lett, 2020, 22: 2012-2016 CrossRef PubMed Google Scholar

[40] Fan WQ, Katritzky AR. 1,2,3-Triazoles. In: Katritzky AR, Rees CW, Scriven EFV, Eds. Comprehensive Heterocyclic Chemistry II. Vol. 4. Oxford: Elsevier, 1996. 1–126. Google Scholar

[41] Agalave SG, Maujan SR, Pore VS. Chem Asian J, 2011, 6: 2696-2718 CrossRef PubMed Google Scholar

[42] Huisgen R, Szeimies G, Möbius L. Chem Ber, 1967, 100: 2494-2507 CrossRef Google Scholar

[43] Usachev BI. J Fluorine Chem, 2018, 210: 6-45 CrossRef Google Scholar

[44] Zhang F, Peng X, Ma J. Chin J Org Chem, 2019, 39: 109-116 CrossRef Google Scholar

[45] Zhou Q, Fu Z, Yu L, Wang J. Asian J Org Chem, 2019, 8: 646-649 CrossRef Google Scholar

[46] Barluenga J, Valdés C. Angew Chem Int Ed, 2011, 50: 7486-7500 CrossRef PubMed Google Scholar

[47] Xiao Q, Zhang Y, Wang J. Acc Chem Res, 2013, 46: 236-247 CrossRef PubMed Google Scholar

[48] Xia Y, Qiu D, Wang J. Chem Rev, 2017, 117: 13810-13889 CrossRef PubMed Google Scholar

[49] Sedgwick DM, Barrio P, Simón A, Román R, Fustero S. J Org Chem, 2016, 81: 8876-8887 CrossRef PubMed Google Scholar

[50] Rabasa-Alcañiz F, Torres J, Sánchez-Roselló M, Tejero T, Merino P, Fustero S, del Pozo C. Adv Synth Catal, 2017, 359: 3752-3764 CrossRef Google Scholar

[51] Rabasa-Alcañiz F, Asensio A, Sánchez-Roselló M, Escolano M, Del Pozo C, Fustero S. J Org Chem, 2017, 82: 2505-2514 CrossRef PubMed Google Scholar

[52] Sánchez Merino A, Alcañiz FR, Gaviña D, Delgado A, Sánchez Roselló M, del Pozo C. Eur J Org Chem, 2019, 2019(39): 6606-6610 CrossRef Google Scholar

[53] Kang MH, Lee SA, Kang NN, Moon BJ. Bull Korean Chem Soc, 2011, 32: 3022-3030 CrossRef Google Scholar

[54] Zhang Z, Yu W, Zhou Q, Li T, Zhang Y, Wang J. Chin J Chem, 2016, 34: 473-476 CrossRef Google Scholar

[55] Ma Y, Reddy BRP, Bi X. Org Lett, 2019, 21: 9860-9863 CrossRef PubMed Google Scholar

[56] Ohashi M, Kambara T, Hatanaka T, Saijo H, Doi R, Ogoshi S. J Am Chem Soc, 2011, 133: 3256-3259 CrossRef PubMed Google Scholar

[57] Hu M, He Z, Gao B, Li L, Ni C, Hu J. J Am Chem Soc, 2013, 135: 17302-17305 CrossRef PubMed Google Scholar

[58] Hu M, Ni C, Li L, Han Y, Hu J. J Am Chem Soc, 2015, 137: 14496-14501 CrossRef PubMed Google Scholar

[59] Wu G, Deng Y, Wu C, Wang X, Zhang Y, Wang J. Eur J Org Chem, 2014, 2014(21): 4477-4481 CrossRef Google Scholar

[60] Piettre S, De Cock C, Merenyi R, Viehe HG. Tetrahedron, 1987, 43: 4309-4319 CrossRef Google Scholar

[61] Andrews KG, Faizova R, Denton RM. Nat Commun, 2017, 8: 15913 CrossRef PubMed ADS Google Scholar

[62] Decostanzi M, Campagne JM, Leclerc E. Org Biomol Chem, 2015, 13: 7351-7380 CrossRef PubMed Google Scholar

[63] Zhang D, Liu H, Zhu P, Meng W, Huang Y. RSC Adv, 2016, 6: 73683-73691 CrossRef ADS Google Scholar

[64] McCune CD, Beio ML, Sturdivant JM, de la Salud-Bea R, Darnell BM, Berkowitz DB. J Am Chem Soc, 2017, 139: 14077-14089 CrossRef PubMed Google Scholar

[65] Zhang Z, Zhou Q, Yu W, Li T, Zhang Y, Wang J. Chin J Chem, 2017, 35: 387-391 CrossRef Google Scholar

[66] Grygorenko OO, Artamonov OS, Komarov IV, Mykhailiuk PK. Tetrahedron, 2011, 67: 803-823 CrossRef Google Scholar

[67] Bos M, Poisson T, Pannecoucke X, Charette AB, Jubault P. Chem Eur J, 2017, 23: 4950-4961 CrossRef PubMed Google Scholar

[68] Fuchibe K, Oki R, Hatta H, Ichikawa J. Chem Eur J, 2018, 24: 17932-17935 CrossRef PubMed Google Scholar

[69] Morandi B, Carreira EM. Angew Chem Int Ed, 2010, 49: 938-941 CrossRef PubMed Google Scholar

[70] Liang X, Guo P, Yang W, Li M, Jiang C, Sun W, Loh TP, Jiang Y. Chem Commun, 2020, 56: 2043-2046 CrossRef PubMed Google Scholar

[71] Zhu CL, Yang LJ, Li S, Zheng Y, Ma JA. Org Lett, 2015, 17: 3442-3445 CrossRef PubMed Google Scholar

[72] Ning Y, Zhang X, Gai Y, Dong Y, Sivaguru P, Wang Y, Reddy BRP, Zanoni G, Bi X. Angew Chem Int Ed, 2020, 59: 6473-6481 CrossRef PubMed Google Scholar

[73] Mykhailiuk PK. Angew Chem Int Ed, 2015, 54: 6558-6561 CrossRef PubMed Google Scholar

[74] Morandi B, Carreira EM. Angew Chem Int Ed, 2010, 49: 4294-4296 CrossRef PubMed Google Scholar

[75] Barroso R, Jiménez A, Carmen Pérez-Aguilar M, Cabal MP, Valdés C. Chem Commun, 2016, 52: 3677-3680 CrossRef PubMed Google Scholar

[76] Gillingham D, Fei N. Chem Soc Rev, 2013, 42: 4918-4931 CrossRef PubMed Google Scholar

[77] Ostrovskii VS, Beletskaya IP, Titanyuk ID. Org Lett, 2019, 21: 9080-9083 CrossRef PubMed Google Scholar

[78] McDonald IA, Lacoste JM, Bey P, Palfreyman MG, Zreika M. J Med Chem, 1985, 28: 186-193 CrossRef PubMed Google Scholar

[79] Weintraub PM, Holland AK, Gates CA, Moore WR, Resvick RJ, Bey P, Peet NP. Bioorg Med Chem, 2003, 11: 427-431 CrossRef Google Scholar

[80] West TH, Spoehrle SSM, Kasten K, Taylor JE, Smith AD. ACS Catal, 2015, 5: 7446-7479 CrossRef Google Scholar

[81] Sani M, Candiani G, Pecker F, Malpezzi L, Zanda M. Tetrahedron Lett, 2005, 46: 2393-2396 CrossRef Google Scholar

[82] Yan X, Li C, Xu X, Zhao X, Pan Y. Adv Synth Catal, 2020, 362: 2005-2011 CrossRef Google Scholar

[83] Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Chem Rev, 2015, 115: 9981-10080 CrossRef PubMed Google Scholar

[84] McNamara OA, Maguire AR. Tetrahedron, 2011, 67: 9-40 CrossRef Google Scholar

[85] Crespin L, Biancalana L, Morack T, Blakemore DC, Ley SV. Org Lett, 2017, 19: 1084-1087 CrossRef PubMed Google Scholar

[86] Yada A, Fujita S, Murakami M. J Am Chem Soc, 2014, 136: 7217-7220 CrossRef PubMed Google Scholar

[87] Chu WD, Guo F, Yu L, Hong J, Liu Q, Mo F, Zhang Y, Wang J. Chin J Chem, 2018, 36: 217-222 CrossRef Google Scholar

[88] Wang Y, Wen X, Cui X, Zhang XP. J Am Chem Soc, 2018, 140: 4792-4796 CrossRef PubMed Google Scholar

[89] Aggarwal VK, Alonso E, Hynd G, Lydon KM, Palmer MJ, Porcelloni M, Studley JR. Angew Chem Int Ed, 2001, 40: 1430-1433 CrossRef Google Scholar

[90] Aggarwal VK, Alonso E, Fang G, Ferrara M, Hynd G, Porcelloni M. Angew Chem Int Ed, 2001, 40: 1433-1436 CrossRef Google Scholar

[91] Aggarwal VK, Alonso E, Bae I, Hynd G, Lydon KM, Palmer MJ, Patel M, Porcelloni M, Richardson J, Stenson RA, Studley JR, Vasse JL, Winn CL. J Am Chem Soc, 2003, 125: 10926-10940 CrossRef Google Scholar

[92] Wang Y, Wen X, Cui X, Wojtas L, Zhang XP. J Am Chem Soc, 2017, 139: 1049-1052 CrossRef PubMed Google Scholar

[93] Wen X, Wang Y, Zhang XP. Chem Sci, 2018, 9: 5082-5086 CrossRef PubMed Google Scholar

[94] Zhang X, Tian C, Wang Z, Sivaguru P, Nolan SP, Bi X. ACS Catal, 2021, 11: 8527–8537. Google Scholar

qqqq

Contact and support