logo

SCIENCE CHINA Chemistry, Volume 64 , Issue 7 : 1164-1169(2021) https://doi.org/10.1007/s11426-021-1004-y

Visible-light-driven external-photocatalyst-free alkylative carboxylation of alkenes with CO2

More info
  • ReceivedMar 5, 2021
  • AcceptedApr 6, 2021
  • PublishedJun 10, 2021

Abstract


Funded by

the National Natural Science Foundation of China(21822108,21772129)

the Fok Ying Tung Education Foundation(161013)

Sichuan Science and Technology Program(20CXTD0112)

and Fundamental Research Funds.


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21822108, 21772129), the Fok Ying Tung Education Foundation (161013), Sichuan Science and Technology Program (20CXTD0112), and Fundamental Research Funds for the Central Universities.


Interest statement

The authors declare no conflict of interest.


Supplement

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Das S. CO2 as a Building Block in Organic Synthesis. Weinheim: Wiley-VCH, 2020. Google Scholar

[2] Liu Q, Wu L, Jackstell R, Beller M. Nat Commun, 2015, 6: 5933 CrossRef PubMed ADS Google Scholar

[3] Song QW, Zhou ZH, He LN. Green Chem, 2017, 19: 3707-3728 CrossRef Google Scholar

[4] Wang S, Xi C. Chem Soc Rev, 2019, 48: 382-404 CrossRef PubMed Google Scholar

[5] Grignard B, Gennen S, Jérôme C, Kleij AW, Detrembleur C. Chem Soc Rev, 2019, 48: 4466-4514 CrossRef PubMed Google Scholar

[6] Maag H. Prodrugs of Carboxylic Acids. New York: Springer, 2007. Google Scholar

[7] Ye JH, Ju T, Huang H, Liao LL, Yu DG. Acc Chem Res, 2021, 54: 2518-2531 CrossRef PubMed Google Scholar

[8] Zhang L, Hou Z. Curr Opin Green Sustain Chem, 2017, 3: 17-21 CrossRef Google Scholar

[9] Tortajada A, Juliá-Hernández F, Börjesson M, Moragas T, Martin R. Angew Chem Int Ed, 2018, 57: 15948-15982 CrossRef PubMed Google Scholar

[10] Yan SS, Fu Q, Liao LL, Sun GQ, Ye JH, Gong L, Bo-Xue YZ, Yu DG. Coord Chem Rev, 2018, 374: 439-463 CrossRef Google Scholar

[11] Luan YX, Ye M. Tetrahedron Lett, 2018, 59: 853-861 CrossRef Google Scholar

[12] Yan M, Kawamata Y, Baran PS. Chem Rev, 2017, 117: 13230-13319 CrossRef PubMed Google Scholar

[13] Cao Y, He X, Wang N, Li HR, He LN. Chin J Chem, 2018, 36: 644-659 CrossRef Google Scholar

[14] Chen Y, Lu LQ, Yu DG, Zhu CJ, Xiao WJ. Sci China Chem, 2019, 62: 24-57 CrossRef Google Scholar

[15] Zhang Z, Gong L, Zhou XY, Yan SS, Li J, Yu DG. Acta Chim Sin, 2019, 77: 783-793 CrossRef Google Scholar

[16] Hou J, Li JS, Wu J. Asian J Org Chem, 2018, 7: 1439-1447 CrossRef Google Scholar

[17] Yeung CS. Angew Chem Int Ed, 2019, 58: 5492-5502 CrossRef PubMed Google Scholar

[18] Zhang Z, Ye JH, Ju T, Liao LL, Huang H, Gui YY, Zhou WJ, Yu DG. ACS Catal, 2020, 10: 10871-10885 CrossRef Google Scholar

[19] He X, Qiu LQ, Wang WJ, Chen KH, He LN. Green Chem, 2020, 22: 7301-7320 CrossRef Google Scholar

[20] Prier CK, Rankic DA, MacMillan DWC. Chem Rev, 2013, 113: 5322-5363 CrossRef PubMed Google Scholar

[21] Romero NA, Nicewicz DA. Chem Rev, 2016, 116: 10075-10166 CrossRef PubMed Google Scholar

[22] Shaw MH, Twilton J, MacMillan DWC. J Org Chem, 2016, 81: 6898-6926 CrossRef PubMed Google Scholar

[23] Murata K, Numasawa N, Shimomaki K, Takaya J, Iwasawa N. Chem Commun, 2017, 53: 3098-3101 CrossRef PubMed Google Scholar

[24] Murata K, Numasawa N, Shimomaki K, Takaya J, Iwasawa N. Front Chem, 2019, 7: 371 CrossRef PubMed ADS Google Scholar

[25] Seo H, Liu A, Jamison TF. J Am Chem Soc, 2017, 139: 13969-13972 CrossRef PubMed Google Scholar

[26] Meng QY, Wang S, Huff GS, König B. J Am Chem Soc, 2018, 140: 3198-3201 CrossRef PubMed Google Scholar

[27] Huang H, Ye JH, Zhu L, Ran CK, Miao M, Wang W, Chen H, Zhou WJ, Lan Y, Yu B, Yu DG. CCS Chem, 2020, 2: 1746-1756 CrossRef Google Scholar

[28] Yatham VR, Shen Y, Martin R. Angew Chem Int Ed, 2017, 56: 10915-10919 CrossRef PubMed Google Scholar

[29] Hou J, Ee A, Cao H, Ong HW, Xu JH, Wu J. Angew Chem Int Ed, 2018, 57: 17220-17224 CrossRef PubMed Google Scholar

[30] Zhang B, Yi Y, Wu ZQ, Chen C, Xi C. Green Chem, 2020, 22: 5961-5965 CrossRef Google Scholar

[31] Liao LL, Cao GM, Jiang YX, Jin XH, Hu XL, Chruma JJ, Sun GQ, Gui YY, Yu DG. J Am Chem Soc, 2021, 143: 2812-2821 CrossRef PubMed Google Scholar

[32] Fu Q, Bo ZY, Ye JH, Ju T, Huang H, Liao LL, Yu DG. Nat Commun, 2019, 10: 3592 CrossRef PubMed ADS Google Scholar

[33] Wang H, Gao Y, Zhou C, Li G. J Am Chem Soc, 2020, 142: 8122-8129 CrossRef PubMed Google Scholar

[34] Zhou WJ, Wang ZH, Liao LL, Jiang YX, Cao KG, Ju T, Li Y, Cao GM, Yu DG. Nat Commun, 2020, 11: 3263 CrossRef PubMed ADS Google Scholar

[35] Zhou C, Li M, Sun J, Cheng J, Sun S. Org Lett, 2021, 23: 2895-2899 CrossRef PubMed Google Scholar

[36] Zhang W, Lin S. J Am Chem Soc, 2020, 142: 20661-20670 CrossRef PubMed Google Scholar

[37] Ju T, Zhou YQ, Cao KG, Fu Q, Ye JH, Sun GQ, Liu XF, Chen L, Liao LL, Yu DG. Nat Catal, 2021, 4: 304-311 CrossRef Google Scholar

[38] Johnson, MK, Smith, AD. Iron-sulfur proteins. In: King RB, Ed. Encyclopedia of Inorganic Chemistry. 2nd Ed. Weinheim: Wiley-VCH, 2005. Google Scholar

[39] Rickard D, Luther GW. Chem Rev, 2007, 107: 514-562 CrossRef PubMed Google Scholar

[40] Ye JH, Miao M, Huang H, Yan SS, Yin ZB, Zhou WJ, Yu DG. Angew Chem Int Ed, 2017, 56: 15416-15420 CrossRef PubMed Google Scholar

[41] Zheng C, You SL. Chem Soc Rev, 2012, 41: 2498-2518 CrossRef PubMed Google Scholar

[42] Jung J, Kim J, Park G, You Y, Cho EJ. Adv Synth Catal, 2016, 358: 74-80 CrossRef Google Scholar

[43] Panferova LI, Tsymbal AV, Levin VV, Struchkova MI, Dilman AD. Org Lett, 2016, 18: 996-999 CrossRef PubMed Google Scholar

[44] Chen W, Tao H, Huang W, Wang G, Li S, Cheng X, Li G. Chem Eur J, 2016, 22: 9546-9550 CrossRef PubMed Google Scholar

[45] Wang PZ, Chen JR, Xiao WJ. Org Biomol Chem, 2019, 17: 6936-6951 CrossRef PubMed Google Scholar

[46] Buzzetti L, Prieto A, Roy SR, Melchiorre P. Angew Chem Int Ed, 2017, 56: 15039-15043 CrossRef PubMed Google Scholar

[47] Goti G, Bieszczad B, Vega-Peñaloza A, Melchiorre P. Angew Chem Int Ed, 2019, 58: 1213-1217 CrossRef PubMed Google Scholar

[48] van Leeuwen T, Buzzetti L, Perego LA, Melchiorre P. Angew Chem Int Ed, 2019, 58: 4953-4957 CrossRef PubMed Google Scholar

[49] Bieszczad B, Perego LA, Melchiorre P. Angew Chem Int Ed, 2019, 58: 16878-16883 CrossRef PubMed Google Scholar

[50] Pope BM, Yamamoto Y, Tarbell DS. Org Synth, 1977, 57: 45. Google Scholar

[51] Dean CS, Tarbell DS, Friederang AW. J Org Chem, 1970, 35: 3393-3397 CrossRef Google Scholar

[52] Marzo L, Pagire SK, Reiser O, König B. Angew Chem Int Ed, 2018, 57: 10034-10072 CrossRef PubMed Google Scholar

[53] Liu B, Lim CH, Miyake GM. J Am Chem Soc, 2017, 139: 13616-13619 CrossRef PubMed Google Scholar

[54] Yang M, Cao T, Xu T, Liao S. Org Lett, 2019, 21: 8673-8678 CrossRef PubMed Google Scholar

[55] Li G, Yan Q, Gan Z, Li Q, Dou X, Yang D. Org Lett, 2019, 21: 7938-7942 CrossRef PubMed Google Scholar

  • Figure 1

    Visible-light-driven carboxylation of alkenes with CO2. EWG is electron-withdrawing group (color online).

  • Scheme 1

    Substrate scope of 4-alkyl-DHPs. Reaction conditions: 1 (0.2 mmol), 2a (0.3 mmol), LiOtBu (0.8 mmol) in DMSO (3.0 mL) under 1 atm of CO2, 30 W blue LEDs, rt, 12 h. Isolated yields were given.

  • Figure 2

    Control experiments (color online).

  • Scheme 2

    Substrate scope of activated alkenes. Reaction conditions: 1a(0.2 mmol), 2 (0.3 mmol), LiOtBu (0.8 mmol), DMSO (3.0 mL), 1 atm of CO2, 30 W blue LEDs, rt, 12 h. Isolated yields were given.

  • Figure 3

    UV-Vis absorption spectra of different components in DMSO (path length=1 cm) for each species and picture of solutions in quartz cuvettes (color online).

  • Figure 4

    Proposed mechanism (color online).

  • Table 1   Optimization of reaction conditions a)

    Entry

    Alteration from standard conditions b)

    Yield c)

    1

    NaOtBu (2.5 equiv.) instead of LiOtBu,

    NMP instead of DMSO

    56%

    2

    No change

    88% (96%) d)

    3

    KOtBu instead of LiOtBu

    79%

    4

    NaOtBu instead of LiOtBu

    70%

    5

    CsF instead of LiOtBu

    82%

    6

    0.5 mol% of fac-Ir(ppy)3 as additive

    89%

    7

    0.5 mol% of 4CzIPN as additive

    92%

    8

    LiOtBu (3 equiv.) instead of (4 equiv.)

    (90%) d)

    9

    LiOtBu (2 equiv.) instead of (4 equiv.)

    (89%) d)

    10

    LiOtBu (1 equiv.) instead of (4 equiv.)

    (55%) d)

    11

    No light

    n.d. e)

    12

    No LiOtBu

    n.d.

    13

    N2 instead of CO2

    n.d.

    Reaction conditions: 1a (0.2 mmol), 2a (0.3 mmol), LiOtBu (0.8 mmol), DMSO (3.0 mL), 1 atm of CO2, 30 W blue LEDs, room temperature (rt), 12 h. b) DMSO=dimethyl sulfoxide, NMP=1-methylpyrrolidin-2-one, ppy=2-phenylpyridine. c) Yields were isolated yields. d) Ultra performance liquid chromatography (UPLC) yields were given in parentheses with 100 μL anisole as an internal standard. e) n.d.=not detected. Diethyl 2,6-dimethylpyridine-3,5-dicarboxylate 4 was observed as byproduct.

qqqq

Contact and support