logo

In-situ nanoscale insights into the evolution of solid electrolyte interphase shells: revealing interfacial degradation in lithium metal batteries

Yang Shi 1,2,†, Gui-Xian Liu 1,2,†, Jing Wan 1,2, Rui Wen 1,2,*, Li-Jun Wan 1,2,*
More info
  • ReceivedDec 15, 2020
  • AcceptedMar 17, 2021
  • PublishedMar 22, 2021

Abstract


Funded by

the National Key R&D Program of China(2016YFA0202500)

National Nature Science Fund for Excellent Young Scholars(21722508)


Acknowledgment

This work was financially supported by the National Key R&D Program of China (2016YFA0202500) and National Nature Science Fund for Excellent Young Scholars (21722508).


Interest statement

The authors declare no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Sun Y, Liu N, Cui Y. Nat Energy, 2016, 1: 16071 CrossRef ADS Google Scholar

[2] Cheng XB, Zhang R, Zhao CZ, Zhang Q. Chem Rev, 2017, 117: 10403-10473 CrossRef PubMed Google Scholar

[3] Han F, Westover AS, Yue J, Fan X, Wang F, Chi M, Leonard DN, Dudney NJ, Wang H, Wang C. Nat Energy, 2019, 4: 187-196 CrossRef ADS Google Scholar

[4] Wang Q, Yang C, Yang J, Wu K, Hu C, Lu J, Liu W, Sun X, Qiu J, Zhou H. Adv Mater, 2019, 31: 1903248 CrossRef PubMed Google Scholar

[5] Zhao CZ, Duan H, Huang JQ, Zhang J, Zhang Q, Guo YG, Wan LJ. Sci China Chem, 2019, 62: 1286-1299 CrossRef Google Scholar

[6] Xie H, Hao Q, Jin H, Xie S, Sun Z, Ye Y, Zhang C, Wang D, Ji H, Wan LJ. Sci China Chem, 2020, 63: 1306-1314 CrossRef Google Scholar

[7] Gao Y, Yan Z, Gray JL, He X, Wang D, Chen T, Huang Q, Li YC, Wang H, Kim SH, Mallouk TE, Wang D. Nat Mater, 2019, 18: 384-389 CrossRef PubMed ADS Google Scholar

[8] Pei A, Zheng G, Shi F, Li Y, Cui Y. Nano Lett, 2017, 17: 1132-1139 CrossRef PubMed ADS Google Scholar

[9] Yulaev A, Oleshko V, Haney P, Liu J, Qi Y, Talin AA, Leite MS, Kolmakov A. Nano Lett, 2018, 18: 1644-1650 CrossRef PubMed ADS Google Scholar

[10] Liu H, Cheng XB, Xu R, Zhang XQ, Yan C, Huang JQ, Zhang Q. Adv Energy Mater, 2019, 9: 1902254 CrossRef Google Scholar

[11] Foroozan T, Sharifi-Asl S, Shahbazian-Yassar R. J Power Sources, 2020, 461: 228135 CrossRef ADS Google Scholar

[12] Shen X, Zhang R, Chen X, Cheng X, Li X, Zhang Q. Adv Energy Mater, 2020, 10: 1903645 CrossRef Google Scholar

[13] Liu T, Lin L, Bi X, Tian L, Yang K, Liu J, Li M, Chen Z, Lu J, Amine K, Xu K, Pan F. Nat Nanotech, 2019, 14: 50-56 CrossRef PubMed ADS Google Scholar

[14] Wan J, Hao Y, Shi Y, Song YX, Yan HJ, Zheng J, Wen R, Wan LJ. Nat Commun, 2019, 10: 3265 CrossRef PubMed ADS Google Scholar

[15] Zheng J, Kim MS, Tu Z, Choudhury S, Tang T, Archer LA. Chem Soc Rev, 2020, 49: 2701-2750 CrossRef PubMed Google Scholar

[16] Wang A, Kadam S, Li H, Shi S, Qi Y. npj Comput Mater, 2018, 4: 15 CrossRef ADS Google Scholar

[17] Shen C, Hu G, Cheong LZ, Huang S, Zhang JG, Wang D. Small Methods, 2017, 2: 1700298 CrossRef Google Scholar

[18] Kitta M. Langmuir, 2020, 36: 9701-9708 CrossRef PubMed Google Scholar

[19] Sagane F, Ikeda K, Okita K, Sano H, Sakaebe H, Iriyama Y. J Power Sources, 2013, 233: 34-42 CrossRef Google Scholar

[20] Lin D, Liu Y, Li Y, Li Y, Pei A, Xie J, Huang W, Cui Y. Nat Chem, 2019, 11: 382-389 CrossRef PubMed ADS Google Scholar

[21] Winter M. Z für Physikalische Chem, 2009, 223: 1395-1406 CrossRef Google Scholar

[22] Shi F, Pei A, Boyle DT, Xie J, Yu X, Zhang X, Cui Y. Proc Natl Acad Sci USA, 2018, 115: 8529-8534 CrossRef PubMed Google Scholar

[23] Zhang S, Yang G, Liu S, Li X, Wang X, Wang Z, Chen L. Nano Energy, 2020, 70: 104486 CrossRef Google Scholar

[24] Chen XR, Yao YX, Yan C, Zhang R, Cheng XB, Zhang Q. Angew Chem Int Ed, 2020, 59: 7743-7747 CrossRef PubMed Google Scholar

[25] Hou C, Han J, Liu P, Yang C, Huang G, Fujita T, Hirata A, Chen M. Adv Energy Mater, 2019, 9: 1902675 CrossRef Google Scholar

  • Figure 1

    (a) Schematic illustration of an in-situ AFM cell. (b) The voltage profiles of a Cu electrode in PC containing 0.5 M LiTFSI at the current density of 0.5 mA cm−2. The inset in (b) is an enlarged view of the red box area marked at initial Li deposition. In-situ AFM images of the interfacial morphology variation during the 1st Li deposition/stripping. Images at (c) OCP with Li deposition for 300 s (d), 600 s (e), 900 s (f) and stripping for 300 s (g), 600 s (h). It takes about 300 s for one AFM image (color online).

  • Figure 2

    In-situ AFM imaging of Li deposition/stripping on the Cu electrode at the current density of 0.5 mA cm−2 in subsequent cycling in PC containing 0.5 M LiTFSI. Images after Li deposition for 0 s (a), 300 s (b), 600 s (c) ,900 s (d) and stripping for 300 s (e), 600 s (f) in the 2nd cycle, and subsequently, Li deposition for 0 s (g), 300 s (h), 600 s (i), 900 s (j), and stripping for 200 s (k), 400 s (l) in the 3rd cycle. It takes about 300 s for one AFM image (color online).

  • Figure 3

    (a, b) SEM images of deposits after Li deposition and (c) TEM image of the SEI shell after Li stripping on a Cu foil in PC containing 0.5 M LiTFSI. (d) EIS spectra of the Cu||Li coin cell at OCP and after the 1st, 2nd and 3rd cycle. The lines are the fitted curves. XPS of C 1s (e) and F 1s (f) of the SEI shells after 3 cycles of Li deposition/stripping in PC containing 0.5 M LiTFSI (color online).

  • Figure 4

    Schematic illustration of Li deposition/stripping processes and degradation mechanism at the electrode/electrolyte interface (color online).