logo

Facile synthesis of gradient copolymers enabled by droplet-flow photo-controlled reversible deactivation radical polymerization

More info
  • ReceivedDec 18, 2020
  • AcceptedJan 18, 2021
  • PublishedMar 23, 2021

Abstract


Funded by

the National Natural Science Foundation of China(21704016,21971044)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21704016, 21971044).


Interest statement

The authors declare no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Lutz JF, Ouchi M, Liu DR, Sawamoto M. Science, 2013, 341: 1238149 CrossRef PubMed Google Scholar

[2] Badi N, Lutz JF. Chem Soc Rev, 2009, 38: 3383-3390 CrossRef PubMed Google Scholar

[3] Qu C, He J. Sci China Chem, 2015, 58: 1651-1662 CrossRef Google Scholar

[4] Kim J, Gray MK, Zhou H, Nguyen SBT, Torkelson JM. Macromolecules, 2005, 38: 1037-1040 CrossRef ADS Google Scholar

[5] Lefay C, Charleux B, Save M, Chassenieux C, Guerret O, Magnet S. Polymer, 2006, 47: 1935-1945 CrossRef Google Scholar

[6] Mok MM, Kim J, Torkelson JM. J Polym Sci B Polym Phys, 2008, 46: 48-58 CrossRef ADS Google Scholar

[7] Luo Y, Guo Y, Gao X, Li BG, Xie T. Adv Mater, 2013, 25: 743-748 CrossRef PubMed Google Scholar

[8] Amonoo JA, Li A, Purdum GE, Sykes ME, Huang B, Palermo EF, McNeil AJ, Shtein M, Loo YL, Green PF. J Mater Chem A, 2015, 3: 20174-20184 CrossRef Google Scholar

[9] Zhang G, Jiang J, Zhang Q, Gao F, Zhan X, Chen F. Langmuir, 2016, 32: 1380-1388 CrossRef PubMed Google Scholar

[10] Zheng Z, Gao X, Luo Y, Zhu S. Macromolecules, 2016, 49: 2179-2188 CrossRef ADS Google Scholar

[11] Wang J, Li S, Zhao Q, Song C, Xue Z. Adv Funct Mater 2020: 2008208. Google Scholar

[12] Moad G, Rizzardo E, Thang SH. Acc Chem Res, 2008, 41: 1133-1142 CrossRef PubMed Google Scholar

[13] Kamigaito M, Ando T, Sawamoto M. Chem Rev, 2001, 101: 3689-3746 CrossRef PubMed Google Scholar

[14] Braunecker WA, Matyjaszewski K. Prog Polym Sci, 2007, 32: 93-146 CrossRef Google Scholar

[15] Hawker CJ, Bosman AW, Harth E. Chem Rev, 2001, 101: 3661-3688 CrossRef PubMed Google Scholar

[16] Corrigan N, Jung K, Moad G, Hawker CJ, Matyjaszewski K, Boyer C. Prog Polym Sci, 2020, 111: 101311 CrossRef Google Scholar

[17] Chen Y, Chen H, Feng M, Dong Y. Eur Polym J, 2016, 85: 489-498 CrossRef Google Scholar

[18] Zhang J, Farias-Mancilla B, Destarac M, Schubert US, Keddie DJ, Guerrero-Sanchez C, Harrisson S. Macromol Rapid Commun, 2018, 39: 1800357 CrossRef PubMed Google Scholar

[19] Xu S, Corrigan N, Boyer C. Polym Chem, 2021, 12: 57-68 CrossRef Google Scholar

[20] Xu S, Zhang T, Kuchel RP, Yeow J, Boyer C. Macromol Rapid Commun, 2020, 41: 1900493 CrossRef PubMed Google Scholar

[21] Matyjaszewski K, Ziegler MJ, Arehart SV, Greszta D, Pakula T. J Phys Org Chem, 2000, 13: 775-786 CrossRef Google Scholar

[22] Liu X, Wang M, Harrisson S, Debuigne A, Marty JD, Destarac M. ACS Sustain Chem Eng, 2017, 5: 9645-9650 CrossRef Google Scholar

[23] Harrisson S, Ercole F, Muir BW. Polym Chem, 2010, 1: 326-332 CrossRef Google Scholar

[24] Saubern S, Nguyen X, Nguyen V, Gardiner J, Tsanaktsidis J, Chiefari J. Macromol React Eng, 2017, 11: 1600065 CrossRef Google Scholar

[25] Reis MH, Leibfarth FA, Pitet LM. ACS Macro Lett, 2020, 9: 123-133 CrossRef Google Scholar

[26] Buss BL, Miyake GM. Chem Mater, 2018, 30: 3931-3942 CrossRef PubMed Google Scholar

[27] Zaquen N, Rubens M, Corrigan N, Xu J, Zetterlund PB, Boyer C, Junkers T. Prog Polym Sci, 2020, 107: 101256 CrossRef Google Scholar

[28] Cambié D, Bottecchia C, Straathof NJW, Hessel V, Noël T. Chem Rev, 2016, 116: 10276-10341 CrossRef PubMed Google Scholar

[29] Zhong ZR, Chen YN, Zhou Y, Chen M. Chin J Polym Sci, 2021, doi: 10.1007/s10118-021-2529-8 CrossRef Google Scholar

[30] Rubens M, Vrijsen JH, Laun J, Junkers T. Angew Chem Int Ed, 2019, 58: 3183-3187 CrossRef PubMed Google Scholar

[31] Walsh DJ, Schinski DA, Schneider RA, Guironnet D. Nat Commun, 2020, 11: 3094 CrossRef PubMed ADS Google Scholar

[32] Walsh DJ, Guironnet D. Proc Natl Acad Sci USA, 2019, 116: 1538-1542 CrossRef PubMed Google Scholar

[33] Lin B, Hedrick JL, Park NH, Waymouth RM. J Am Chem Soc, 2019, 141: 8921-8927 CrossRef PubMed Google Scholar

[34] Corrigan N, Yeow J, Judzewitsch P, Xu J, Boyer C. Angew Chem Int Ed, 2019, 58: 5170-5189 CrossRef PubMed Google Scholar

[35] Chen M, Zhong M, Johnson JA. Chem Rev, 2016, 116: 10167-10211 CrossRef PubMed Google Scholar

[36] Dadashi-Silab S, Doran S, Yagci Y. Chem Rev, 2016, 116: 10212-10275 CrossRef PubMed Google Scholar

[37] Zhou Y, Gu Y, Jiang K, Chen M. Macromolecules, 2019, 52: 5611-5617 CrossRef ADS Google Scholar

[38] Reis MH, Varner TP, Leibfarth FA. Macromolecules, 2019, 52: 3551-3557 CrossRef ADS Google Scholar

[39] Nakatani K, Terashima T, Sawamoto M. J Am Chem Soc, 2009, 131: 13600-13601 CrossRef PubMed Google Scholar

[40] Rieger E, Blankenburg J, Grune E, Wagner M, Landfester K, Wurm FR. Angew Chem Int Ed, 2018, 57: 2483-2487 CrossRef PubMed Google Scholar

[41] Wang Y, Zhao Y, Ye Y, Peng H, Zhou X, Xie X, Wang X, Wang F. Angew Chem Int Ed, 2018, 57: 3593-3597 CrossRef PubMed Google Scholar

[42] Olsson S, Dahlstrand C, Gogoll A. Dalton Trans, 2018, 47: 11572-11585 CrossRef PubMed Google Scholar

[43] Shanmugam S, Cuthbert J, Flum J, Fantin M, Boyer C, Kowalewski T, Matyjaszewski K. Polym Chem, 2019, 10: 2477-2483 CrossRef Google Scholar

[44] Nothling MD, Fu Q, Reyhani A, Allison-Logan S, Jung K, Zhu J, Kamigaito M, Boyer C, Qiao GG. Adv Sci, 2020, 7: 2001656 CrossRef PubMed Google Scholar

[45] Xia L, Cheng BF, Zeng TY, Nie X, Chen G, Zhang Z, Zhang WJ, Hong CY, You YZ. Adv Sci, 2020, 7: 1902451 CrossRef PubMed Google Scholar

[46] Zhao Y, Ma M, Lin X, Chen M. Angew Chem Int Ed, 2020, 59: 21470-21474 CrossRef PubMed Google Scholar

[47] Jiang K, Han S, Ma M, Zhang L, Zhao Y, Chen M. J Am Chem Soc, 2020, 142: 7108-7115 CrossRef PubMed Google Scholar

[48] Shen L, Lu Q, Zhu A, Lv X, An Z. ACS Macro Lett, 2017, 6: 625-631 CrossRef Google Scholar

[49] Nie H, Li S, Qian S, Han Z, Zhang W. Angew Chem Int Ed, 2019, 58: 11449-11453 CrossRef PubMed Google Scholar

[50] Wu Z, Jung K, Boyer C. Angew Chem Int Ed, 2020, 59: 2013-2017 CrossRef PubMed Google Scholar

[51] Li M, Fromel M, Ranaweera D, Rocha S, Boyer C, Pester CW. ACS Macro Lett, 2019, 8: 374-380 CrossRef Google Scholar

[52] Shanmugam S, Boyer C. J Am Chem Soc, 2015, 137: 9988-9999 CrossRef Google Scholar

[53] Shanmugam S, Xu J, Boyer C. J Am Chem Soc, 2015, 137: 9174-9185 CrossRef Google Scholar

[54] Judzewitsch PR, Corrigan N, Trujillo F, Xu J, Moad G, Hawker CJ, Wong EHH, Boyer C. Macromolecules, 2020, 53: 631-639 CrossRef ADS Google Scholar

[55] Kim J, Mok MM, Sandoval RW, Woo DJ, Torkelson JM. Macromolecules, 2006, 39: 6152-6160 CrossRef ADS Google Scholar

[56] Miaudet P, Derré A, Maugey M, Zakri C, Piccione PM, Inoubli R, Poulin P. Science, 2007, 318: 1294-1296 CrossRef PubMed ADS Google Scholar

[57] Xie T. Nature, 2010, 464: 267-270 CrossRef PubMed ADS Google Scholar

[58] Okabe S, Seno KI, Kanaoka S, Aoshima S, Shibayama M. Macromolecules, 2006, 39: 1592-1597 CrossRef ADS Google Scholar

[59] Qiao S, Wang H. Nano Res, 2018, 11: 5400-5423 CrossRef Google Scholar

  • Figure 1

    Gradient copolymerization conducted under computer-aided droplet-flow conditions. (a) General setup of the flow system; (b) three gradient tendencies and corresponding necklace models generated in this work (color online).

  • Figure 2

    Process for the generation of gradient copolymers via the droplet-flow photopolymerization with pre-diffusion before light irradiation (method A) (color online).

  • Figure 3

    Investigation on the formation of gradient copolymers with pre-diffusion before polymerization (method A). (a–d) Kinetic plots for the copolymerization of DMA and BA. (e–h) Simulated diagrams of instantaneous BA contained in copolymers (Finst,BA) as a function of total conversion. From left to right, VA/VB=1:0, 1:1, 1:2, 1:4, respectively (color online).

  • Figure 4

    Process for the generation of gradient copolymers via the droplet-flow photopolymerization without pre-diffusion before light irradiation (method B) (color online).

  • Figure 5

    Kinetic plots for the copolymerization of DMA and BA without pre-diffusion before photopolymerization (method B). From (a) to (c), VA/VB=1:1, 1:2, 1:4, respectively (color online).

  • Figure 6

    Investigation on Tg of copolymers with different sequences by DSC measurement. (a) The derivatives of DSC heating curves for PDMA-r-PBA, PDMA-b-PBA, and PDMA-grad-PBA. (b–d) Derivative of DSC heating curves for PDMA-grad-PBA prepared with (blue) and without (yellow) pre-diffusion of BA during droplet-flow photopolymerization (color online).

  • Figure 7

    Synthesis of copolymers with different gradient tendencies and chemical compositions. (a) Without and (b) with pre-diffusion before polymerization; (c) V-shape gradient copolymer synthesized without pre-diffusion (color online).

  • Figure 8

    Synthesis of (PDMA-grad-PBA)-b-PDMA via the chain-extension from the macro-initiator of PDMA-grad-PBA (color online).

  • Figure 9

    Rh and PDI of NIPAm/BA copolymers in H2O/methanol (1:9, V/V) at different temperatures (squares for gradient sequence, circles for random sequence, triangles for block sequence) (color online).

  • Table 1   Synthesis of DMA/BA gradient copolymers with pre-diffusion before photopolymerization (method A) a)

    Entry

    VA/VB

    Flow rates of streamsA/B (μL/min)

    Residence time (min)

    Conv. of DMA (%)

    Conv. of BA (%)

    Mn,calc b) (kDa)

    Mn,SEC b) (kDa)

    Đ b)

    1

    1:1

    20:20

    60

    82

    62

    16.5

    19.5

    1.32

    2

    1:2

    13.3:26.7

    60

    78

    48

    14.3

    17.1

    1.30

    3

    1:4

    8:32

    60

    75

    29

    11.5

    14.2

    1.22

    4

    1:4 c)

    8:32

    60

    65

    18

    7.8

    10.8

    1.21

    5

    1:4 c)

    4:16

    120

    82

    34

    11.6

    13.6

    1.22

    All reactions were performed with [DMA]/[BA]/[CTA]/[PC]=100:100:1:0.01, [DMA]=1 M at room temperature. A 23 W white LED bulb was used as light source. Residence time is equal to the exposure time of light irradiation. b) Mn,calc was determined based on monomer conversions, Mn,SEC and Đ were determined by SEC measurement. c) [DMA]/[BA]/[CTA]/[PC]=67:133:1:0.01, [DMA]=0.67 M.

qqqq

Contact and support