logo

Handedness-inverted polymorphic helical assembly and circularly polarized luminescence of chiral platinum complexes

More info
  • ReceivedSep 19, 2020
  • AcceptedNov 25, 2020
  • PublishedJan 11, 2021

Abstract


Funded by

the National Science Fund for Distinguished Young Scholars(21925112)

the National Natural Science Foundation of China(21601194,21872154)

and Beijing Natural Science Foundation(2191003)


Acknowledgment

This work was supported by the National Science Fund for Distinguished Young Scholars (21925112), the National Natural Science Foundation of China (22090021, 21601194, 21872154), and Beijing Natural Science Foundation (2191003).


Interest statement

The authors declare no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Yashima E, Ousaka N, Taura D, Shimomura K, Ikai T, Maeda K. Chem Rev, 2016, 116: 13752-13990 CrossRef PubMed Google Scholar

[2] Liu M, Zhang L, Wang T. Chem Rev, 2015, 115: 7304-7397 CrossRef PubMed Google Scholar

[3] Zhang L, Wang T, Shen Z, Liu M. Adv Mater, 2016, 28: 1044-1059 CrossRef PubMed Google Scholar

[4] Jonkheijm P, van der Schoot P, Schenning APHJ, Meijer EW. Science, 2006, 313: 80-83 CrossRef PubMed ADS Google Scholar

[5] Wehner M, Röhr MIS, Bühler M, Stepanenko V, Wagner W, Würthner F. J Am Chem Soc, 2019, 141: 6092-6107 CrossRef PubMed Google Scholar

[6] Xing P, Zhao Y. Acc Chem Res, 2018, 51: 2324-2334 CrossRef PubMed Google Scholar

[7] Xing P, Yang C, Wang Y, Phua SZF, Zhao Y. Adv Funct Mater, 2018, 28: 1802859 CrossRef Google Scholar

[8] Hifsudheen M, Mishra RK, Vedhanarayanan B, Praveen VK, Ajayaghosh A. Angew Chem Int Ed, 2017, 56: 12634-12638 CrossRef PubMed Google Scholar

[9] Cai Y, Guo Z, Chen J, Li W, Zhong L, Gao Y, Jiang L, Chi L, Tian H, Zhu WH. J Am Chem Soc, 2016, 138: 2219-2224 CrossRef PubMed Google Scholar

[10] Micali N, Engelkamp H, van Rhee PG, Christianen PCM, Monsù Scolaro L, Maan JC. Nat Chem, 2012, 4: 201-207 CrossRef PubMed ADS Google Scholar

[11] Yamauchi M, Ohba T, Karatsu T, Yagai S. Nat Commun, 2015, 6: 8936 CrossRef PubMed ADS Google Scholar

[12] Niu D, Jiang Y, Ji L, Ouyang G, Liu M. Angew Chem Int Ed, 2019, 58: 5946-5950 CrossRef PubMed Google Scholar

[13] Chen Y, Huang F, Li ZT, Liu Y. Sci China Chem, 2018, 61: 979-992 CrossRef Google Scholar

[14] Han J, Guo S, Lu H, Liu S, Zhao Q, Huang W. Adv Opt Mater, 2018, 6: 1800538 CrossRef Google Scholar

[15] Li M, Li SH, Zhang D, Cai M, Duan L, Fung MK, Chen CF. Angew Chem Int Ed, 2018, 57: 2889-2893 CrossRef PubMed Google Scholar

[16] Liang X, Liu TT, Yan ZP, Zhou Y, Su J, Luo XF, Wu ZG, Wang Y, Zheng YX, Zuo JL. Angew Chem Int Ed, 2019, 58: 17220-17225 CrossRef PubMed Google Scholar

[17] Lee S, Kim KY, Jung SH, Lee JH, Yamada M, Sethy R, Kawai T, Jung JH. Angew Chem Int Ed, 2019, 58: 18878-18882 CrossRef PubMed Google Scholar

[18] Takaishi K, Iwachido K, Takehana R, Uchiyama M, Ema T. J Am Chem Soc, 2019, 141: 6185-6190 CrossRef PubMed Google Scholar

[19] Jiménez JR, Doistau B, Cruz CM, Besnard C, Cuerva JM, Campaña AG, Piguet C. J Am Chem Soc, 2019, 141: 13244-13252 CrossRef PubMed Google Scholar

[20] Li J, Bisoyi HK, Lin S, Guo J, Li Q. Angew Chem Int Ed, 2019, 58: 16052-16056 CrossRef PubMed Google Scholar

[21] Zhao J, Zhang T, Dong XY, Sun ME, Zhang C, Li X, Zhao YS, Zang SQ. J Am Chem Soc, 2019, 141: 15755-15760 CrossRef PubMed Google Scholar

[22] Sang Y, Han J, Zhao T, Duan P, Liu M. Adv Mater, 2020, 32: 1900110 CrossRef PubMed Google Scholar

[23] Jiang Z, Wang X, Ma J, Liu Z. Sci China Chem, 2019, 62: 355-362 CrossRef Google Scholar

[24] Ma Z, Winands T, Liang N, Meng D, Jiang W, Doltsinis NL, Wang Z. Sci China Chem, 2020, 63: 208-214 CrossRef Google Scholar

[25] Han J, You J, Li X, Duan P, Liu M. Adv Mater, 2017, 29: 1606503 CrossRef PubMed Google Scholar

[26] Zhang J, Liu Q, Wu W, Peng J, Zhang H, Song F, He B, Wang X, Sung HHY, Chen M, Li BS, Liu SH, Lam JWY, Tang BZ. ACS Nano, 2019, 13: 3618-3628 CrossRef PubMed Google Scholar

[27] Goto T, Okazaki Y, Ueki M, Kuwahara Y, Takafuji M, Oda R, Ihara H. Angew Chem Int Ed, 2017, 56: 2989-2993 CrossRef PubMed Google Scholar

[28] Li H, Li BS, Tang BZ. Chem Asian J, 2019, 14: 674–688. Google Scholar

[29] Sánchez-Carnerero EM, Agarrabeitia AR, Moreno F, Maroto BL, Muller G, Ortiz MJ, de la Moya S. Chem Eur J, 2015, 21: 13488-13500 CrossRef PubMed Google Scholar

[30] Yam VWW, Au VKM, Leung SYL. Chem Rev, 2015, 115: 7589-7728 CrossRef PubMed Google Scholar

[31] Wong KMC, Yam VWW. Acc Chem Res, 2011, 44: 424-434 CrossRef PubMed Google Scholar

[32] Tam AYY, Wong KMC, Yam VWW. J Am Chem Soc, 2009, 131: 6253-6260 CrossRef PubMed Google Scholar

[33] Tam AYY, Tsang DPK, Chan MY, Zhu N, Yam VWW. Chem Commun, 2011, 47: 3383-3385 CrossRef PubMed Google Scholar

[34] Po C, Tam AYY, Wong KMC, Yam VWW. J Am Chem Soc, 2011, 133: 12136-12143 CrossRef PubMed Google Scholar

[35] Leung SY-L, Wong KM-C, Yam VW-W. Proc Natl Acad Sci USA, 2016, 113: 2845-2850 CrossRef PubMed ADS Google Scholar

[36] Fu HLK, Leung SYL, Yam VWW. Chem Commun, 2017, 53: 11349-11352 CrossRef PubMed Google Scholar

[37] Au-Yeung HL, Leung SYL, Yam VWW. Chem Commun, 2018, 54: 4128-4131 CrossRef PubMed Google Scholar

[38] Chan MHY, Leung SYL, Yam VWW. J Am Chem Soc, 2018, 140: 7637-7646 CrossRef PubMed Google Scholar

[39] Aliprandi A, Mauro M, De Cola L. Nat Chem, 2016, 8: 10-15 CrossRef PubMed ADS Google Scholar

[40] Sinn S, Yang L, Biedermann F, Wang D, Kübel C, Cornelissen JJLM, De Cola L. J Am Chem Soc, 2018, 140: 2355-2362 CrossRef PubMed Google Scholar

[41] Li K, Ming Tong GS, Wan Q, Cheng G, Tong WY, Ang WH, Kwong WL, Che CM. Chem Sci, 2016, 7: 1653-1673 CrossRef PubMed Google Scholar

[42] Yuen MY, Roy VAL, Lu W, Kui SCF, Tong GSM, So MH, Chui SSY, Muccini M, Ning JQ, Xu SJ, Che CM. Angew Chem Int Ed, 2008, 47: 9895-9899 CrossRef PubMed Google Scholar

[43] Yoshida M, Kato M. Coord Chem Rev, 2018, 355: 101-115 CrossRef Google Scholar

[44] Ohno K, Hasebe M, Nagasawa A, Fujihara T. Inorg Chem, 2017, 56: 12158-12168 CrossRef PubMed Google Scholar

[45] Gross A, Moriuchi T, Hirao T. Chem Commun, 2013, 49: 1163-1165 CrossRef PubMed Google Scholar

[46] Shigeta Y, Kobayashi A, Yoshida M, Kato M. Inorg Chem, 2019, 58: 7385-7392 CrossRef PubMed Google Scholar

[47] Nishiuchi Y, Takayama A, Suzuki T, Shinozaki K. Eur J Inorg Chem, 2011, 2011(11): 1815-1823 CrossRef Google Scholar

[48] Kato M, Ito H, Hasegawa M, Ishii K. Chem Eur J, 2019, 25: 5105-5112 CrossRef PubMed Google Scholar

[49] Camerel F, Ziessel R, Donnio B, Bourgogne C, Guillon D, Schmutz M, Iacovita C, Bucher JP. Angew Chem Int Ed, 2007, 46: 2659-2662 CrossRef PubMed Google Scholar

[50] Kozhevnikov VN, Donnio B, Bruce DW. Angew Chem Int Ed, 2008, 47: 6286-6289 CrossRef PubMed Google Scholar

[51] Herkert L, Droste J, Kartha KK, Korevaar PA, de Greef TFA, Hansen MR, Fernández G. Angew Chem Int Ed, 2019, 58: 11344-11349 CrossRef PubMed Google Scholar

[52] Langenstroer A, Kartha KK, Dorca Y, Droste J, Stepanenko V, Albuquerque RQ, Hansen MR, Sánchez L, Fernández G. J Am Chem Soc, 2019, 141: 5192-5200 CrossRef PubMed Google Scholar

[53] Gao Z, Han Y, Gao Z, Wang F. Acc Chem Res, 2018, 51: 2719-2729 CrossRef PubMed Google Scholar

[54] Li Z, Han Y, Wang F. Nat Commun, 2019, 10: 3735 CrossRef PubMed ADS Google Scholar

[55] Sun MJ, Liu Y, Zeng W, Zhao YS, Zhong YW, Yao J. J Am Chem Soc, 2019, 141: 6157-6161 CrossRef PubMed Google Scholar

[56] Ikeda T, Takayama M, Kumar J, Kawai T, Haino T. Dalton Trans, 2015, 44: 13156-13162 CrossRef PubMed Google Scholar

[57] Tanaka S, Sato K, Ichida K, Abe T, Tsubomura T, Suzuki T, Shinozaki K. Chem Asian J, 2016, 11: 265-273 CrossRef PubMed Google Scholar

[58] Ikeda T, Hirano K, Haino T. Mater Chem Front, 2018, 2: 468-474 CrossRef Google Scholar

[59] Park G, Kim H, Yang H, Park KR, Song I, Oh JH, Kim C, You Y. Chem Sci, 2019, 10: 1294-1301 CrossRef PubMed Google Scholar

[60] Han J, Lu H, Xu Y, Guo S, Zheng X, Tao P, Liu S, Zhang X, Zhao Q. J Organomet Chem, 2020, 915: 121240 CrossRef Google Scholar

[61] Aliprandi A, Croisetu CM, Mauro M, Cola LD. Chem Eur J, 2017, 23: 5957-5961 CrossRef PubMed Google Scholar

[62] Wan Q, Xiao XS, To WP, Lu W, Chen Y, Low KH, Che CM. Angew Chem Int Ed, 2018, 57: 17189-17193 CrossRef PubMed Google Scholar

[63] Kim KY, Kim J, Moon CJ, Liu J, Lee SS, Choi MY, Feng C, Jung JH. Angew Chem Int Ed, 2019, 58: 11709-11714 CrossRef PubMed Google Scholar

[64] Percec V, Ahn CH, Bera TK, Ungar G, Yeardley DJP. Chem Eur J, 1999, 5: 1070-1083 CrossRef Google Scholar

[65] Gong ZL, Zhong YW. Organometallics, 2013, 32: 7495-7502 CrossRef Google Scholar

[66] Kobayashi K, Matsumoto N, Matsumoto K. Heterocycles, 2013, 87: 389-397 and references therein CrossRef Google Scholar

[67] Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. J Appl Crystlogr, 2009, 42: 339-341 CrossRef Google Scholar

[68] Lai SW, Lam HW, Lu W, Cheung KK, Che CM. Organometallics, 2002, 21: 226-234 CrossRef Google Scholar

[69] Wang Z, Turner E, Mahoney V, Madakuni S, Groy T, Li J. Inorg Chem, 2010, 49: 11276-11286 CrossRef PubMed Google Scholar

[70] Farley SJ, Rochester DL, Thompson AL, Howard JAK, Williams JAG. Inorg Chem, 2005, 44: 9690-9703 CrossRef PubMed Google Scholar

[71] Yang J, Chi Z, Zhu W, Tang BZ, Li Z. Sci China Chem, 2019, 62: 1090-1098 CrossRef Google Scholar

[72] Zhou Y, Hua J, Tang BZ, Tang Y. Sci China Chem, 2019, 62: 1312-1332 CrossRef Google Scholar

[73] Liu Y, Wu G, Yang Z, Rouh H, Katakam N, Ahmed S, Unruh D, Cui Z, Lischka H, Li G. Sci China Chem, 2020, 63: 692-698 CrossRef Google Scholar

[74] Shen Z, Wang T, Shi L, Tang Z, Liu M. Chem Sci, 2015, 6: 4267-4272 CrossRef PubMed Google Scholar

[75] De Greef TFA, Smulders MMJ, Wolffs M, Schenning APHJ, Sijbesma RP, Meijer EW. Chem Rev, 2009, 109: 5687-5754 CrossRef PubMed Google Scholar

[76] Smulders MMJ, Schenning APHJ, Meijer EW. J Am Chem Soc, 2008, 130: 606-611 CrossRef PubMed Google Scholar

[77] Ponnuswamy N, Pantoş GD, Smulders MMJ, Sanders JKM. J Am Chem Soc, 2012, 134: 566-573 CrossRef PubMed Google Scholar

[78] Smulders MMJ, Nieuwenhuizen MML, deâ…Greef TFA, vanâ…derâ…Schoot P, Schenning APHJ, Meijer EW. Chem Eur J, 2010, 16: 362-367 CrossRef PubMed Google Scholar

  • Scheme 1

    Synthetic route of compound 3.

  • Figure 1

    (a) Different molecular stacking models of platinum complexes; (b) compounds (R)-1, (S)-1 and 2 studied in this work (color online).

  • Figure 2

    (a) Absorption spectra of (R)-1 solution in THF and (R)-1 colloid dispersion in mixed THF/Hex (4:6). Concentration=2´10−5 M. (b) Emission spectra of (R)-1 in mixed THF/Hex with a volume ratio of 10:0, 9:1, 8:2, 7:3, 6:4, 5:5, and 4:6, respectively (excited at 400 nm). Inset: photos of (R)-1 in THF and THF/Hex (4:6, v/v), respectively, under 365 nm irradiation. (c, d) CD and CPL spectra of (R)-1 and (S)-1 dilute solutions and their dispersions in mixed THF/Hex (4:6). (e) CD spectra of (R)-1 dispersion in mixed THF/Hex (4:6, 2´10−5 M) upon cooling from 323 to 288 K at a rate of 1 °C/min (one data per K). (f) The plot of αT as a function of temperature according to the CD signal changes at 330 nm of panel (e). (g, h) Changes of the CD spectra and the signal intensity at 295 nm of (R)-1 in mixed THF/Hex (4:6, 5´10−5 M) measured during repeated cooling and heating cycles between 60 °C and 20 °C (10 °C/5 min) (color online).

  • Scheme 2

    Synthetic route of compound 4.

  • Figure 3

    (a) Absorption and (b) excitation spectra (λemi=660 nm) of (R)-1 solutions with different concentrations in THF. (c) CD spectra of (R)-1 and (S)-1 dilute solutions and their concentrated solutions. (d) Emission spectral changes of (R)-1 in THF upon increasing the concentration from 2´10−5 to 5´10−5, 1´10−4, 2´10−4, 5´10−4, 1´10−3, and 2´10−3 M. Excited at 400 nm. Inset: photos of (R)-1 in THF with a concentration of 2´10−5 and 2´10−3 M, respectively, under 365 nm irradiation. (e) Variable-temperature absorption spectra of (R)-1 in THF (5´10−5 M, 180–295 K) at a rate of 2 K/min (one data per 5 K). (f) The plot of αT vs. temperature according to the absorbance intensity changes at 295 nm of panel (e) (color online).

  • Scheme 3

    Synthetic route of compound (R)-1.

  • Figure 4

    (a) 1H NMR spectra of (R)-1 in mixed THF-d8/cyclohexane-d12 of various ratios indicated (1.5´10−3 M). (b) 2D NOESY spectrum of (R)-1 in THF-d8/cyclohexane-d12 (5:3, v/v, 1.5´10−3 M) at room temperature. (c) A schematic representation of the twisted-antiparallel dimeric stacking of (R)-1 (alkoxyl chains are omitted for clarity) that could be formed under the mixed-solvent condition, in which intermolecular hydrogen bonding between the amide groups is not possible. Such an arrangement can make most aromatic protons and the N-H proton have effective electron shielding and thus shift these proton signals to the high field upon aggregation. (d) Variable-temperature 1H NMR spectra of (R)-1 (4´10−3 M) upon cooling from 298 to 248 K in THF-d8. (e) 2D NOESY spectrum of (R)-1 in THF-d8 (4´10−3 M) at 258 K. (f) A schematic representation of the twisted-parallel dimeric stacking of (R)-1 that could be formed under the high-concentration condition, in which intermolecular hydrogen bonding between the amide groups is possible. The spatial correlation between the blue Ha atom with the red Hd and Hc atoms and that between the blue Hb atom with the red Hd and He atoms are possible in this mode as indicated in panel (e) (color online).

  • Scheme 4

    Synthetic route of compound (S)-1.

  • Figure 5

    (a) Absorption, (b) CD, (c) CPL, and (d) emission spectra of the solid samples of Co-(R)-1 and Co-(S)-1 on quartz. (f) Absorption, (g) CD, (h) CPL, and (i) emission spectra of the solid samples of Iso-(R)-1 and Iso-(S)-1 on quartz. The excitation wavelength is 400 nm for CPL. (e, j) Fluorescent microscopic images of (e) Co-(R)-1 and (j) Iso-(R)-1 under UV irradiation (color online).

  • Scheme 5

    Synthetic route of compound 2.

  • Figure 6

    (a, d, g, j) TEM images on carbon-coated copper grids, (b, e, h, k) SEM images on silica wafers, and (c, f, i, l) AFM images on mica of (a–c) Co-(R)-1, (d–f) Co-(S)-1, (g–i) Iso-(R)-1, and (j–l) Iso-(S)-1, respectively. The curves in the bottom of (c, f, i, l) are height profiles along lines 1 and 2 of each AFM image; arrows are placed at the helical turnings for a clear view of the chiral structures (color online).

  • Figure 7

    (a) Chemical structure and thermal ellipsoid plot of the single-crystal X-ray structure (PF6 are omitted) of 2 at the 50% probability level. (b) Emission spectra of 2 in mixed THF/Hex with different volume ratios indicated. Excited at 400 nm. (c) Emission spectral changes of 2 in THF upon increasing the concentration from 1´10−5 to 5´10−5, 1´10−4, 2.5´10−4, 5´10−4, and 1´10−3 M. (d–g) SEM images on silica wafers of 2 obtained from the solution in (d, f) THF/Hex (3:7, 5´10−5 M) and (e, g) pure THF with a concentration of 1´10−3 M, respectively (color online).

  • Figure 8

    (a) Crystal packing of 2 viewing from the b axis. Counter anions are omitted. (b) XRD spectra of compounds indicated (color online).

  • Figure 9

    Cartoon representation of polymorphic assembly of (R)-1 leading to CPL-active yellow-emissive, left handed nanoribbons and red emissive, right-handed nanofibers, respectively (color online).

  • Table 1   Photophysics data a)

    Materials a)

    λabs(nm) (×104 M−1 cm−1)

    gabs/λabs (nm) b)

    λemi (nm)

    glum/λemi (nm) c)

    Φ (%)

    τ (μs)

    (R)-1 in THF (2×10−5 M)

    295/4.2, 393/0.50

    d)

    533

    1.8/20 e)

    0.26/10.3 e)

    (R)-1 in THF/Hex (4/6, 2×10−5 M)

    290/2.7, 394/0.49

    0.0027/290,

    −0.0004/322

    533, 588

    −0.15/540

    27/37 e)

    1.3

    (S)-1 in THF/Hex (4/6, 2×10−5 M)

    290/2.7, 394/0.49

    −0.0025/290,

    0.0003/322

    533, 586

    0.13/540

    25/39 e)

    1.3

    (R)-1 in THF (2×10−3 M)

    393/0.6

    0.00014/393

    660

    15

    0.74

    Co-(R)-1 solid

    305, 396

    0.0047/321,

    0.0018/392

    555

    −0.022/555

    36

    4.4

    Co-(S)-1 solid

    306, 396

    −0.0036/331,

    −0.0014/397

    555

    0.022/555

    33

    4.7

    Iso-(R)-1 solid

    306, 395

    −0.022/326,

    0.0064/362

    660

    0.027/660

    25

    1.1

    Iso-(S)-1 solid

    306, 395

    0.017/330,

    −0.010/362

    660

    −0.028/660

    27

    1.3

    2 in THF (2×10−5 M)

    299/5.0, 393/0.70

    535

    1.7/38 e)

    0.15/8.3 e)

    2 in THF/Hex (4/6, 2×10−5 M)

    294/3.7, 397/0.44

    543

    40/60 e)

    1.22

    2 in THF (2×10−3 M)

    394/0.54

    650

    38

    1.2

    Measured at ambient condition unless otherwise noted; b) absorption anisotropy factor and c) luminescence anisotropy factor at the specified wavelength; d) not determined; e) measured at N2-saturated condition.

qqqq

Contact and support