logo

An A-D-A′-D-A type unfused nonfullerene acceptor for organic solar cells with approaching 14% efficiency

More info
  • ReceivedAug 16, 2020
  • AcceptedSep 7, 2020
  • PublishedNov 17, 2020

Abstract


Funded by

the National Natural Science Foundation of China(21774130,51925306)

the National Key R&D Program of China(2018FYA,0305800)

the Key Research Program of Frontier Sciences

CAS(QYZDB-SSW-JSC046)

Key Research Program of the Chinese Academy of Sciences(XDPB08-2)

the Strategic Priority Research Program of Chinese Academy of Sciences(XDB28000000)

the International Partnership Program of Chinese Academy of Sciences(211211KYSB20170014)

and China Postdoctoral Science Foundation(2020M670425)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21774130, 51925306), the National Key R&D Program of China (2018FYA 0305800), the Key Research Program of Frontier Sciences, CAS (QYZDB-SSW-JSC046), Key Research Program of the Chinese Academy of Sciences (XDPB08-2), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB28000000), the International Partnership Program of Chinese Academy of Sciences (211211KYSB20170014), and China Postdoctoral Science Foundation (2020M670425). DFT results described in this short communication are obtained on the National Supercomputing Center in Shenzhen (Shenzhen Cloud Computing Center).


Interest statement

The authors declare no conflict of interest.


Contributions statement

These authors contributed equally to this work.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K, Yang S, Zhang X, Ding L. Sci Bull, 2020, 65: 272-275 CrossRef ADS Google Scholar

[2] Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip HL, Cao Y, Chen Y. Science, 2018, 361: 1094-1098 CrossRef PubMed ADS Google Scholar

[3] Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139: 7148-7151 CrossRef PubMed Google Scholar

[4] Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140-1151 CrossRef Google Scholar

[5] Huang H, Yang L, Facchetti A, Marks TJ. Chem Rev, 2017, 117: 10291-10318 CrossRef PubMed Google Scholar

[6] Yu S, Peng A, Zhang S, Huang H. Sci China Chem, 2018, 61: 1359-1367 CrossRef Google Scholar

[7] Li S, Zhan L, Liu F, Ren J, Shi M, Li CZ, Russell TP, Chen H. Adv Mater, 2018, 30: 1705208 CrossRef PubMed Google Scholar

[8] Qin R, Yang W, Li S, Lau TK, Yu Z, Liu Z, Shi M, Lu X, Li CZ, Chen H. Mater Chem Front, 2019, 3: 513-519 CrossRef Google Scholar

[9] Huang H, Guo Q, Feng S, Zhang C, Bi Z, Xue W, Yang J, Song J, Li C, Xu X, Tang Z, Ma W, Bo Z. Nat Commun, 2019, 10: 3038 CrossRef PubMed ADS Google Scholar

[10] Chang M, Meng L, Wang Y, Ke X, Yi YQQ, Zheng N, Zheng W, Xie Z, Zhang M, Yi Y, Zhang H, Wan X, Li C, Chen Y. Chem Mater, 2020, 32: 2593-2604 CrossRef Google Scholar

[11] He C, Li Y, Li S, Yu ZP, Li Y, Lu X, Shi M, Li CZ, Chen H. ACS Appl Mater Interfaces, 2020, 12: 16700-16706 CrossRef PubMed Google Scholar

[12] Wu J, Xu Y, Yang Z, Chen Y, Sui X, Yang L, Ye P, Zhu T, Wu X, Liu X, Cao H, Peng A, Huang H. Adv Energy Mater, 2019, 9: 1803012 CrossRef Google Scholar

[13] Dong T, Lv L, Feng L, Xia Y, Deng W, Ye P, Yang B, Ding S, Facchetti A, Dong H, Huang H. Adv Mater, 2017, 29: 1606025 CrossRef PubMed Google Scholar

[14] Li S, Zhan L, Lau T, Yu Z, Yang W, Andersen TR, Fu Z, Li C, Lu X, Shi M, Chen H. Small Methods, 2019, 3: 1900531 CrossRef Google Scholar

[15] Chang Q, Chen H, Yuan J, Hu Y, Hai J, Liu W, Cai F, Hong J, Xiao X, Zou Y. J Energy Chem, 2020, 51: 7-13 CrossRef Google Scholar

[16] Feng S, Li M, Tang N, Wang X, Huang H, Ran G, Liu Y, Xie Z, Zhang W, Bo Z. ACS Appl Mater Interfaces, 2020, 12: 4638-4648 CrossRef PubMed Google Scholar

[17] Wang Y, Liu Z, Cui X, Wang C, Lu H, Liu Y, Fei Z, Ma Z, Bo Z. J Mater Chem A, 2020, 8: 12495-12501 CrossRef Google Scholar

[18] Zhang Z, Zhang S, Liu Z, Zhang Z, Li Y, Li C, Chen H. Acta Physico-Chim Sin, 2019, 35: 394-400 CrossRef Google Scholar

[19] Yu ZP, Liu ZX, Chen FX, Qin R, Lau TK, Yin JL, Kong X, Lu X, Shi M, Li CZ, Chen H. Nat Commun, 2019, 10: 2152 CrossRef PubMed ADS Google Scholar

[20] Geng SZ, Yang WT, Gao J, Li SX, Shi MM, Lau TK, Lu XH, Li CZ, Chen HZ. Chin J Polym Sci, 2019, 37: 1005-1014 CrossRef Google Scholar

[21] Bin H, Zhang ZG, Gao L, Chen S, Zhong L, Xue L, Yang C, Li Y. J Am Chem Soc, 2016, 138: 4657-4664 CrossRef PubMed Google Scholar

[22] Yuan J, Zhang C, Chen H, Zhu C, Cheung SH, Qiu B, Cai F, Wei Q, Liu W, Yin H, Zhang R, Zhang J, Liu Y, Zhang H, Liu W, Peng H, Yang J, Meng L, Gao F, So S, Li Y, Zou Y. Sci China Chem, 2020, 63: 1159-1168 CrossRef Google Scholar

[23] Mai J, Xiao Y, Zhou G, Wang J, Zhu J, Zhao N, Zhan X, Lu X. Adv Mater, 2018, 30: 1802888 CrossRef PubMed Google Scholar

  • Figure 1

    (a) The chemical structure, and (b) the geometry-optimized structure (all the alkyl chains were simplified as methyl group) of BTzO-4F; (c) potential energy surface scan of the rotamer BTzO-CPT; (d) normalized dilute solution and thin film optical absorption spectra of BTzO-4F; (e) 2D GIWAXS pattern of the neat film; (f) CV plots of BTzO-4F measured in 0.1 M Bu4NPF6 acetonitrile solution at a scan rate of 100 mV s−1 (color online).

  • Figure 2

    (a) JV curve, (b) EQE response, and (c) JphVeff for PBDB-T:BTzO-4F based device. (d) 2D GIWAXD patterns for the blend film based on PBDB-T:BTzO-4F (color online).

qqqq

Contact and support