logo

SCIENCE CHINA Chemistry, Volume 63 , Issue 10 : 1336-1351(2020) https://doi.org/10.1007/s11426-020-9788-2

Recent advances in asymmetric synthesis with CO2

More info
  • ReceivedMar 6, 2020
  • AcceptedJun 8, 2020
  • PublishedJul 20, 2020

Abstract


Funded by

the National Natural Science Foundation of China(21801176,91956111)

the Sichuan Science and Technology Program(2019YJ0379,20CXTD0112)

the Fundamental Research Funds for the Central Universities.


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21801176, 91956111), the Sichuan Science and Technology Program (2019YJ0379, 20CXTD0112) and the Fundamental Research Funds for the Central Universities.


Interest statement

The authors declare no conflict of interest.


Contributions statement

These authors contributed equally to this work.


References

[1] Song C. Catal Today, 2006, 115: 2-32 CrossRef Google Scholar

[2] von der Assen N, Voll P, Peters M, Bardow A. Chem Soc Rev, 2014, 43: 7982-7994 CrossRef Google Scholar

[3] Li L, Zhao N, Wei W, Sun Y, Burkart MD, Hazari N, Tway CL, Zeitler EL. Fuel, 2013, 108: 112-130 CrossRef Google Scholar

[4] Huang K, Sun CL, Shi ZJ, Martín R, Kleij  AW, Tsuji Y, Fujihara T, Zhang L, Hou Z, He M, Sun Y, Han B, Liu Q, Wu L, Jackstell R, Beller M, Yu D, Teong SP, Zhang Y, Zhu Q, Wang L, Xia C, Liu C, Tortajada A, Juliá‐Hernández F, Börjesson M, Moragas T, Martin R, Chen YG, Xu XT, Zhang K, Li YQ, Zhang LP, Fang P, Mei TS, Yan SS, Fu Q, Liao LL, Sun GQ, Ye JH, Gong L, Bo-Xue YZ, Yu DG, Sakakura T, Choi JC, Yasuda H, Sekine K, Yamada T, Yang Y, Lee JW, Fujihara T, Tsuji Y, Song J, Liu Q, Liu H, Jiang X, Luan YX, Ye M, Zhang L, Li Z, Takimoto M, Hou Z, Hong J, Li M, Zhang J, Sun B, Mo F, Tappe NA, Reich RM, D’Elia V, Kühn FE, Wu XF, Zheng F, Janes T, Yang Y, Song D, Zhang L, Hou Z. Aresta M, ed. Carbon Dioxide as Chemical Feedstock. Wiley-VCH: Weinheim, 2010. Google Scholar

[5] Hu J, Liu H, Han B, Cokoja M, Wilhelm ME, Anthofer MH, Herrmann WA, Kühn FE. Sci China Chem, 2018, 61: 1486-1493 CrossRef Google Scholar

[6] Cao Y, He X, Wang N, Li HR, He LN, Zhao Y, Liu Z, Tan F, Yin G, Hou J, Li JS, Wu J, Yeung CS, Gui YY, Zhou WJ, Ye JH, Yu DG, Zhang Z, Gong L, Zhou XY, Yan SS, Li J, Yu DG. Chin J Chem, 2018, 36: 644-659 CrossRef Google Scholar

[7] Senboku H, Katayama A. Curr Opin Green Sustain Chem, 2017, 3: 50-54 CrossRef Google Scholar

[8] Zhang Z, Ye JH, Wu DS, Zhou YQ, Yu DG, Wang S, Xi C, Zhang Z, Ju T, Ye JH, Yu DG, Zhang W, Zhang N, Guo C, Lü X, Pulla S, Felton CM, Ramidi P, Gartia Y, Ali N, Nasini UB, Ghosh A, Lu XB, Darensbourg DJ, North M, Pasquale R, Young C, Song L, Jiang Y, Zhang Z, Gui Y, Zhou X, Yu DG. Chem Asian J, 2018, 13: 2292-2306 CrossRef Google Scholar

[9] Wu L, Liu Q, Jackstell R, Beller M, Tlili A, Blondiaux E, Frogneux X, Cantat T, Li X, He X, Liu X, He LN, Li Y, Cui X, Dong K, Junge K, Beller M, He X, Cao Y, Lang XD, Wang N, He LN, Wang L, Sun W, Liu C, Cabrero-Antonino JR, Adam R, Beller M, Liu XF, Li XY, Qiao C, He LN, Hulla M, Dyson PJ, Zhang Y, Zhang T, Das S. Angew Chem Int Ed, 2014, 53: 6310-6320 CrossRef Google Scholar

[10] Kielland N, Whiteoak CJ, Kleij AW, Vaitla J, Guttormsen Y, Mannisto JK, Nova A, Repo T, Bayer A, Hopmann KH, Childers MI, Longo JM, Van Zee NJ, LaPointe AM, Coates GW. Adv Synth Catal, 2013, 355: 2115-2138 CrossRef Google Scholar

[11] Jacobsen EN, Pfaltz A, Yamamoto H, eds. Comprehensive Asymmetric Catalysis. New York: Springer, 2000. Google Scholar

[12] Gooßen L, Rodríguez N, Gooßen K. Patai S, ed. The Chemistry of Acid Derivatives. New York: Wiley, 1992. Google Scholar

[13] Beller M, ed. Catalytic Carbonylation Reactions. Berlin: Springer, 2006. Google Scholar

[14] BKckvall JE, ed. Modern Oxidation Methods. Weinheim: Wiley-VCH, 2004. Google Scholar

[15] Shaikh AAG, Sivaram S, Schäffner B, Schäffner F, Verevkin SP, Börner A. Chem Rev, 1996, 96: 951-976 CrossRef Google Scholar

[16] Lu XB, Liang B, Zhang YJ, Tian YZ, Wang YM, Bai CX, Wang H, Zhang R, Ren WM, Wu GP, Lin F, Jiang JY, Liu C, Luo Y, Lu XB. J Am Chem Soc, 2004, 126: 3732-3733 CrossRef Google Scholar

[17] Paddock RL, Nguyen SBT. Chem Commun, 2004, 1: 1622-1623 CrossRef Google Scholar

[18] Tanaka H, Kitaichi Y, Sato M, Ikeno T, Yamada T. Chem Lett, 2004, 33: 676-677 CrossRef Google Scholar

[19] Berkessel A, Brandenburg M. Org Lett, 2006, 8: 4401-4404 CrossRef Google Scholar

[20] Chen SW, Kawthekar RB, Kim GJ. Tetrahedron Lett, 2007, 48: 297-300 CrossRef Google Scholar

[21] Chang T, Jing H, Jin L, Qiu W, Jin L, Huang Y, Jing H, Chang T, Yan P, Chang T, Jin L, Jing H, Zhang S, Song Y, Jing H, Yan P, Cai Q, Yan P, Jing H. J Mol Catal A-Chem, 2007, 264: 241-247 CrossRef Google Scholar

[22] Roy T, Kureshy RI, Khan NH, Abdi SHR, Bajaj HC. Catal Sci Technol, 2013, 3: 2661-2667 CrossRef Google Scholar

[23] Ren Y, Cheng X, Yang S, Qi C, Jiang H, Mao Q. Dalton Trans, 2013, 42: 9930-9937 CrossRef Google Scholar

[24] North M, Quek SCZ, Pridmore NE, Whitwood AC, Wu X. ACS Catal, 2015, 5: 3398-3402 CrossRef Google Scholar

[25] Qin J, Larionov VA, Harms K, Meggers E. ChemSusChem, 2019, 12: 320-325 CrossRef Google Scholar

[26] Ema T, Yokoyama M, Watanabe S, Sasaki S, Ota H, Takaishi K. Org Lett, 2017, 19: 4070-4073 CrossRef Google Scholar

[27] Lu XB, Ren WM, Wu GP, Childers MI, Longo JM, Van Zee NJ, LaPointe AM, Coates GW, Monfared A, Mohammadi R, Hosseinian A, Sarhandi S, Kheirollahi Nezhad PD, Grignard B, Gennen S, Jérôme C, Kleij AW, Detrembleur C. Acc Chem Res, 2012, 45: 1721-1735 CrossRef Google Scholar

[28] Allen SD, Moore DR, Lobkovsky EB, Coates GW. J Am Chem Soc, 2002, 124: 14284-14285 CrossRef Google Scholar

[29] Qin Z, Thomas CM, Lee S, Coates GW. Angew Chem Int Ed, 2003, 42: 5484-5487 CrossRef Google Scholar

[30] Lu XB, Wang Y. Angew Chem Int Ed, 2004, 43: 3574-3577 CrossRef Google Scholar

[31] Ren WM, Liu Y, Wu GP, Liu J, Lu XB, Ren WM, Zhang WZ, Lu XB. J Polym Sci A Polym Chem, 2011, 49: 4894-4901 CrossRef ADS Google Scholar

[32] Nakano K, Hashimoto S, Nakamura M, Kamada T, Nozaki K. Angew Chem Int Ed, 2011, 50: 4868-4871 CrossRef Google Scholar

[33] Wu GP, Xu PX, Lu XB, Zu YP, Wei SH, Ren WM, Darensbourg DJ. Macromolecules, 2013, 46: 2128-2133 CrossRef ADS Google Scholar

[34] Inoue S, Koinuma H, Tsuruta T, Inoue S, Koinuma H, Tsuruta T. J Polym Sci B Polym Lett, 1969, 7: 287-292 CrossRef ADS Google Scholar

[35] Wilks ES, ed. Industrial Polymers Handbook. Weinheim: Wiley-VCH, 2001. 291–304. Google Scholar

[36] Luinstra G. Polym Revs, 2008, 48: 192-219 CrossRef Google Scholar

[37] Gomez FJ, Waymouth RM, Nakano K, Kosaka N, Hiyama T, Nozaki K, Worch JC, Prydderch H, Jimaja S, Bexis P, Becker ML, Dove AP. Science, 2002, 295: 635-636 CrossRef Google Scholar

[38] Nozaki K, Nakano K, Hiyama T, Nakano K, Nozaki K, Hiyama T. J Am Chem Soc, 1999, 121: 11008-11009 CrossRef Google Scholar

[39] Cheng M, Darling NA, Lobkovsky EB, Coates GW, Ellis WC, Jung Y, Mulzer M, Di Girolamo R, Lobkovsky EB, Coates GW. Chem Commun, 2000, 1: 2007-2008 CrossRef Google Scholar

[40] Xiao Y, Wang Z, Ding K, Xiao Y, Wang Z, Ding K. Chem Eur J, 2005, 11: 3668-3678 CrossRef Google Scholar

[41] Hua YZ, Yang XC, Liu MM, Song X, Wang MC, Chang JB. Macromolecules, 2015, 48: 1651-1657 CrossRef ADS Google Scholar

[42] Abbina S, Du G. Organometallics, 2012, 31: 7394-7403 CrossRef Google Scholar

[43] Wu GP, Ren WM, Luo Y, Li B, Zhang WZ, Lu XB. J Am Chem Soc, 2012, 134: 5682-5688 CrossRef Google Scholar

[44] Liu Y, Ren WM, Liu J, Lu XB, Liu Y, Ren WM, He KK, Zhang WZ, Li WB, Wang M, Lu XB. Angew Chem Int Ed, 2013, 52: 11594-11598 CrossRef Google Scholar

[45] Li B, Zhang R, Lu XB, Nakano K, Nakamura M, Nozaki K. Jacobsen EN, Tokunaga M, Larrow JF. Stereoselective ring opening reactions. World Patent, WO/2000/09463, 2000-03-14. Google Scholar

[46] Nishioka K, Goto H, Sugimoto H. Macromolecules, 2012, 45: 8172-8192 CrossRef ADS Google Scholar

[47] Yoshida M, Fujita M, Ishii T, Ihara M. J Am Chem Soc, 2003, 125: 4874-4881 CrossRef Google Scholar

[48] Yoshida S, Fukui K, Kikuchi S, Yamada T. J Am Chem Soc, 2010, 132: 4072-4073 CrossRef Google Scholar

[49] Vara BA, Struble TJ, Wang W, Dobish MC, Johnston JN, Yousefi R, Struble TJ, Payne JL, Vishe M, Schley ND, Johnston JN. J Am Chem Soc, 2015, 137: 7302-7305 CrossRef Google Scholar

[50] Barbachyn MR, Ford CW, Mukhtar TA, Wright GD. Angew Chem Int Ed, 2003, 42: 2010-2023 CrossRef Google Scholar

[51] Gao XT, Gan CC, Liu SY, Zhou F, Wu HH, Zhou J. ACS Catal, 2017, 7: 8588-8593 CrossRef Google Scholar

[52] Zhang M, Zhao X, Zheng S. Chem Commun, 2014, 50: 4455-4458 CrossRef Google Scholar

[53] Zheng SC, Zhang M, Zhao XM. Chem Eur J, 2014, 20: 7216-7221 CrossRef Google Scholar

[54] Xie S, Gao X, Zhou F, Wu H, Zhou J. Chin Chem Lett, 2020, 31: 324-328 CrossRef Google Scholar

[55] Kerrick ST, Beak P, Park YS, Beak P. J Am Chem Soc, 1991, 113: 9708-9710 CrossRef Google Scholar

[56] Schlosser M, Limat D. J Am Chem Soc, 1995, 117: 12342-12343 CrossRef Google Scholar

[57] Chong JM, Park SB. J Org Chem, 1992, 57: 2220-2222 CrossRef Google Scholar

[58] Jeanjean F, Fournet G, Bars DL, Goré J. Eur J Org Chem, 2000, 2000: 1297-1305 CrossRef Google Scholar

[59] Mita T, Sugawara M, Hasegawa H, Sato Y. J Org Chem, 2012, 77: 2159-2168 CrossRef Google Scholar

[60] Mita T, Sugawara M, Saito K, Sato Y. Org Lett, 2014, 16: 3028-3031 CrossRef Google Scholar

[61] Perron Q, Alexakis A. Adv Synth Catal, 2010, 352: 2611-2620 CrossRef Google Scholar

[62] Williams CM, Johnson JB, Rovis T, Takaya J, Iwasawa N, Zhang L, Cheng J, Carry B, Hou Z, Wang X, Nakajima M, Martin R, Butcher TW, McClain EJ, Hamilton TG, Perrone TM, Kroner KM, Donohoe GC, Akhmedov NG, Petersen JL, Popp BV, Tortajada A, Ninokata R, Martin R. J Am Chem Soc, 2008, 130: 14936-14937 CrossRef Google Scholar

[63] Takimoto M, Mori M, Takimoto M, Nakamura Y, Kimura K, Mori M. J Am Chem Soc, 2002, 124: 10008-10009 CrossRef Google Scholar

[64] Ishii M, Mori F, Tanaka K. Chem Eur J, 2014, 20: 2169-2174 CrossRef Google Scholar

[65] Kawashima S, Aikawa K, Mikami K. Eur J Org Chem, 2016, 2016: 3166-3170 CrossRef Google Scholar

[66] Dian L, Müller DS, Marek I. Angew Chem Int Ed, 2017, 56: 6783-6787 CrossRef Google Scholar

[67] Pirnot MT, Wang YM, Buchwald SL. Angew Chem Int Ed, 2016, 55: 48-57 CrossRef Google Scholar

[68] Gui YY, Hu N, Chen XW, Liao L, Ju T, Ye JH, Zhang Z, Li J, Yu DG. J Am Chem Soc, 2017, 139: 17011-17014 CrossRef Google Scholar

[69] Qiu J, Gao S, Li C, Zhang L, Wang Z, Wang X, Ding K. Chem Eur J, 2019, 25: 13874-13878 CrossRef Google Scholar

[70] Chen XW, Zhu L, Gui YY, Jing K, Jiang YX, Bo ZY, Lan Y, Li J, Yu DG, Cheng L, Xie J. J Am Chem Soc, 2019, 141: 18825-18835 CrossRef Google Scholar

[71] Jutand A, Yan M, Kawamata Y, Baran PS, Sauermann N, Meyer TH, Qiu Y, Ackermann L, Tang S, Liu Y, Lei A, Sauer GS, Lin S, Yang QL, Fang P, Mei TS, Xiong P, Xu HC, Chang X, Zhang Q, Guo C. Chem Rev, 2008, 108: 2300-2347 CrossRef Google Scholar

[72] Matthessen R, Fransaer J, Binnemans K, De Vos DE. Beilstein J Org Chem, 2014, 10: 2484-2500 CrossRef Google Scholar

[73] Feroci M, Orsini M, Palombi L, Sotgiu G, Colapietro M, Inesi A, Feroci M, Inesi A, Orsini M, Palombi L, Orsini M, Feroci M, Sotgiu G, Inesi A. J Org Chem, 2004, 69: 487-494 CrossRef Google Scholar

[74] Zhang K, Wang H, Zhao SF, Niu DF, Lu JX. J Electroanal Chem, 2009, 630: 35-41 CrossRef Google Scholar

[75] Zhao SF, Zhu MX, Zhang K, Wang H, Lu JX, Chen BL, Tu ZY, Zhu HW, Sun WW, Wang H, Lu JX. Tetrahedron Lett, 2011, 52: 2702-2705 CrossRef Google Scholar

[76] Chen BL, Zhu HW, Xiao Y, Sun QL, Wang H, Lu JX. Electrochem Commun, 2014, 42: 55-59 CrossRef Google Scholar

[77] Jiao KJ, Li ZM, Xu XT, Zhang LP, Li YQ, Zhang K, Mei TS. Org Chem Front, 2018, 5: 2244-2248 CrossRef Google Scholar

qqqq

Contact and support