SCIENCE CHINA Chemistry, Volume 63 , Issue 9 : 1281-1288(2020) https://doi.org/10.1007/s11426-020-9779-1

Fiber-shaped organic electrochemical transistors for biochemical detections with high sensitivity and stability

More info
  • ReceivedMay 13, 2020
  • AcceptedMay 21, 2020
  • PublishedJul 14, 2020



the National Natural Science Foundation of China(21634003,51673043)

Ministry of Science and Technology of China(2016YFA0203302)



Yanchang Petroleum Group.


This work was supported by the National Natural Science Foundation of China (21634003, 51673043), Ministry of Science and Technology of China (2016YFA0203302), Science and Technology Commission of Shanghai Municipality (17QA1400400), Shanghai Municipal Education Commission (2017-01-07-00-07-E00062) and Yanchang Petroleum Group.

Interest statement

The authors declare no conflict of interest.

Supplementary data

Supporting Information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


[1] Shanaiah N, Aruni Desilva M, Nagana Gowda GA, Raftery MA, Hainline BE, Raftery D. Proc Natl Acad Sci USA, 2007, 10411540-11544 CrossRef ADS Google Scholar

[2] Labib M, Sargent EH, Kelley SO. Chem Rev, 2016, 1169001-9090 CrossRef Google Scholar

[3] Wang J. Chem Rev, 2008, 108814-825 CrossRef Google Scholar

[4] Perry M, Li Q, Kennedy RT. Anal Chim Acta, 2009, 6531-22 CrossRef Google Scholar

[5] Broza YY, Zhou X, Yuan M, Qu D, Zheng Y, Vishinkin R, Khatib M, Wu W, Haick H. Chem Rev, 2019, 11911761-11817 CrossRef Google Scholar

[6] Parlak O, İncel Aı, Uzun L, Turner APF, Tiwari A. Biosens Bioelectron, 2017, 89545-550 CrossRef Google Scholar

[7] Dong XC, Xu H, Wang XW, Huang YX, Chan-Park MB, Zhang H, Wang LH, Huang W, Chen P. ACS Nano, 2012, 63206-3213 CrossRef Google Scholar

[8] Gao W, Emaminejad S, Nyein HYY, Challa S, Chen K, Peck A, Fahad HM, Ota H, Shiraki H, Kiriya D, Lien DH, Brooks GA, Davis RW, Javey A. Nature, 2016, 529509-514 CrossRef ADS Google Scholar

[9] Chen Y, Lu S, Zhang S, Li Y, Qu Z, Chen Y, Lu B, Wang X, Feng X. Sci Adv, 2017, 3e1701629 CrossRef ADS Google Scholar

[10] Lee H, Choi TK, Lee YB, Cho HR, Ghaffari R, Wang L, Choi HJ, Chung TD, Lu N, Hyeon T, Choi SH, Kim DH. Nat Nanotech, 2016, 11566-572 CrossRef ADS Google Scholar

[11] Wen X, Wang B, Huang S, Liu T, Lee MS, Chung PS, Chow YT, Huang IW, Monbouquette HG, Maidment NT, Chiou PY. Biosens Bioelectron, 2019, 13137-45 CrossRef Google Scholar

[12] Huang H, Li T, Jiang M, Wei C, Ma S, Chen D, Tong W, Huang X. Biosens Bioelectron, 2020, 152. Google Scholar

[13] Wu X, Peng H. Sci Bull, 2019, 64634-640 CrossRef Google Scholar

[14] Ohayon D, Nikiforidis G, Savva A, Giugni A, Wustoni S, Palanisamy T, Chen X, Maria IP, Di Fabrizio E, Costa PMFJ, McCulloch I, Inal S. Nat Mater, 2020, 19456-463 CrossRef ADS Google Scholar

[15] Weber SG, Long JT. Anal Chem, 1988, 60903A-913A CrossRef Google Scholar

[16] Krishnan SK, Singh E, Singh P, Meyyappan M, Nalwa HS. RSC Adv, 2019, 98778-8881 CrossRef Google Scholar

[17] Rong G, Corrie SR, Clark HA. ACS Sens, 2017, 2327-338 CrossRef Google Scholar

[18] Strakosas X, Bongo M, Owens RM. J Appl Polym Sci, 2015, 1321-14 CrossRef Google Scholar

[19] White HS, Kittlesen GP, Wrighton MS. J Am Chem Soc, 1984, 1065375-5377 CrossRef Google Scholar

[20] Shiri P, Dacanay EJS, Hagen B, Kaake LG. J Mater Chem C, 2019, 712935-12941 CrossRef Google Scholar

[21] Mak CH, Liao C, Fu Y, Zhang M, Tang CY, Tsang YH, Chan HLW, Yan F. J Mater Chem C, 2015, 36532-6538 CrossRef Google Scholar

[22] Tang H, Yan F, Lin P, Xu J, Chan HLW. Adv Funct Mater, 2011, 212264-2272 CrossRef Google Scholar

[23] Khodagholy D, Doublet T, Quilichini P, Gurfinkel M, Leleux P, Ghestem A, Ismailova E, Hervé T, Sanaur S, Bernard C, Malliaras GG. Nat Commun, 2013, 41575 CrossRef ADS Google Scholar

[24] Gualandi I, Marzocchi M, Achilli A, Cavedale D, Bonfiglio A, Fraboni B. Sci Rep, 2016, 633637 CrossRef ADS Google Scholar

[25] Yang A, Li Y, Yang C, Fu Y, Wang N, Li L, Yan F. Adv Mater, 2018, 301800051 CrossRef Google Scholar

[26] Wang L, Fu X, He J, Shi X, Chen T, Chen P, Wang B, Peng H. Adv Mater, 2020, 321901971 CrossRef Google Scholar

[27] Rivnay J, Inal S, Salleo A, Owens RM, Berggren M, Malliaras GG. Nat Rev Mater, 2018, 317086 CrossRef ADS Google Scholar

[28] Liao C, Mak C, Zhang M, Chan HLW, Yan F. Adv Mater, 2015, 27676-681 CrossRef Google Scholar

[29] Fu X, Xu L, Li J, Sun X, Peng H. Carbon, 2018, 1391063-1073 CrossRef Google Scholar

[30] Ye L, Liao M, Sun H, Yang Y, Tang C, Zhao Y, Wang L, Xu Y, Zhang L, Wang B, Xu F, Sun X, Zhang Y, Dai H, Bruce PG, Peng H. Angew Chem Int Ed, 2019, 582437-2442 CrossRef Google Scholar

[31] Hong Y, Cheng XL, Liu GJ, Hong DS, He SS, Wang BJ, Sun XM, Peng HS, Fu X, Li Z, Xu L, Liao M, Sun H, Xie S, Sun X, Wang B, Peng H. Chin J Polym Sci, 2019, 37737-743 CrossRef Google Scholar

[32] Chen Q, Liang C, Sun X, Chen J, Yang Z, Zhao H, Feng L, Liu Z. Proc Natl Acad Sci USA, 2017, 1145343-5348 CrossRef Google Scholar

[33] Park S, Loke G, Fink Y, Anikeeva P. Chem Soc Rev, 2019, 481826-1852 CrossRef Google Scholar

[34] Canales A, Park S, Kilias A, Anikeeva P. Acc Chem Res, 2018, 51829-838 CrossRef Google Scholar

[35] Yang X, Zhou T, Zwang TJ, Hong G, Zhao Y, Viveros RD, Fu TM, Gao T, Lieber CM. Nat Mater, 2019, 18510-517 CrossRef ADS Google Scholar

[36] Canales A, Jia X, Froriep UP, Koppes RA, Tringides CM, Selvidge J, Lu C, Hou C, Wei L, Fink Y, Anikeeva P. Nat Biotechnol, 2015, 33277-284 CrossRef Google Scholar

[37] Wang L, Xie S, Wang Z, Liu F, Yang Y, Tang C, Wu X, Liu P, Li Y, Saiyin H, Zheng S, Sun X, Xu F, Yu H, Peng H. Nat Biomed Eng, 2020, 4159-171 CrossRef Google Scholar

[38] Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma PL. Eur J Pharmacol, 2013, 6986-18 CrossRef Google Scholar

[39] Clark JJ, Sandberg SG, Wanat MJ, Gan JO, Horne EA, Hart AS, Akers CA, Parker JG, Willuhn I, Martinez V, Evans SB, Stella N, Phillips PEM. Nat Methods, 2010, 7126-129 CrossRef Google Scholar

[40] Thamilselvan A, Manivel P, Rajagopal V, Nesakumar N, Suryanarayanan V. Colloids Surfs B-Biointerfaces, 2019, 1801-8 CrossRef Google Scholar

[41] Schwerdt HN, Shimazu H, Amemori K, Amemori S, Tierney PL, Gibson DJ, Hong S, Yoshida T, Langer R, Cima MJ, Graybiel AM. Proc Natl Acad Sci USA, 2017, 11413260-13265 CrossRef ADS Google Scholar

[42] Liao C, Zhang M, Niu L, Zheng Z, Yan F. J Mater Chem B, 2014, 2191-200 CrossRef Google Scholar

[43] Tolosa VM, Wassum KM, Maidment NT, Monbouquette HG. Biosens Bioelectron, 2013, 42256-260 CrossRef Google Scholar

[44] Kergoat L, Piro B, Simon DT, Pham MC, Noël V, Berggren M. Adv Mater, 2014, 265658-5664 CrossRef Google Scholar

[45] Buck K, Voehringer P, Ferger B. J Neurosci Methods, 2009, 18278-84 CrossRef Google Scholar

[46] Hao Y, Yang JY, Guo M, Wu CF, Wu MF. Brain Res, 2005, 1040191-196 CrossRef Google Scholar

[47] Janyasupab M, Liu CW, Chanlek N, Chio-Srichan S, Promptmas C, Surareungchai W. Sens Actuat B-Chem, 2019, 286550-563 CrossRef Google Scholar

[48] Sabu C, Henna TK, Raphey VR, Nivitha KP, Pramod K. Biosens Bioelectron, 2019, 141111201 CrossRef Google Scholar

[49] Thomas PM, Phillips JP, Delanty N, O’Connor WT. Epilepsy Res, 2003, 5473-79 CrossRef Google Scholar

[50] Peričić D, Lazić J, Jazvinšćak Jembrek M, Švob Štrac D. Eur J Pharmacol, 2005, 527105-110 CrossRef Google Scholar

  • Figure 1

    The structure of fiber-shaped all-in-one OECTs. (a) Schematic illustration of a fiber-shaped all-in-one OECT. (b) Representative SEM image of a fiber-shaped all-in-one OECT. (c) SEM image of the boundary between semi-conductor PEDOT:PSS and insulator parylene on Au-coated nylon fiber. (d) Cross-sectional SEM image of PEDOT:PSS coated nylon fiber. (e, f) SEM images of CNT fiber gate electrode modified with Pt NPs at low and high magnifications, respectively (color online).

  • Figure 2

    High sensitivity of the fiber-shaped OECTs. (a) The circuit diagram of the OECTs (S for source, D for drain and G for gate). (b, c) Transfer and output curves of the OECTs using 0.01 M PBS as the electrolyte, respectively. (d, e) Drain current and gate current of the OECT in response to the same H2O2 addition at the same time (VD fixed at −0.6 V and VG fixed at 0.4 V), respectively. (f) Current versus time with the addition of H2O2 as potential of 0.4 Vvs. Ag/AgCl reference electrode. (g) Normalized electrochemical areas of different fiber electrodes. (h) Drain current responses of a fiber-shaped OECT to the addition of H2O2 with different concentrations. (i) Corresponding current change in function of H2O2 concentration at (h) (inset, linear range of low concentration) (color online).

  • Figure 3

    High stability and biocompatibility of the fiber-shaped OECTs. (a) Normalized drain current in response to the cycling pulse of potential. (b) Effective Young’s modulus tested by nanoindentation among biological tissues, CNT fiber, nylon fiber, polyimide film (PI), Au wire and silicon wafer. (c, d) Normalized transconductance of channel and impedance of gate electrode under 2,000 bending cycles, respectively. (e, f) Normalized transconductance of channel and impedance of the gate electrode during 7 d at 37 °C in 0.01 M PBS, respectively. (g) Representative fluorescence images of coronal brain slices with implanted fiber-shaped OECTs for 7 d and the control group without implants. Immunofluorescent staining for 4′,6-diamidino-2-phenylindole (DAPI, blue), neurons (NeuN, green), glial fibrillary acidic protein (GFAP, red) and the merged signals are provided for clarification. The white dotted line indicates the position of fiber-shaped device (color online).

  • Figure 4

    Multi-functionalization and in vivo detection of the fiber-shaped OECTs. (a) Schematic illustration for the gate electrode of fiber-shaped dopamine-OECT and the mechanism of DA detection. (b) Drain current responses of the dopamine-OECT (inset, the representative linear range). (c) The anti-interference characterization of the dopamine-OECT. (d) Schematic illustration for the gate electrode of fiber-shaped glutamate-OECT and the mechanism of glutamate detection. (e) Drain current responses of the glutamate-OECT (inset, the representative linear range). (f) The anti-interference characterization of the glutamate-OECT. (g) Schematic illustration for the gate electrode of fiber-shaped glucose-OECT and the mechanism of glucose detection. (h) Drain current responses of the glucose-OECT (inset, the representative linear range). (i) The anti-interference characterization of the glucose-OECT. (j–l) In vivo detection of DA using the dopamine-OECT for 7 d in the same mouse brain (color online).


Contact and support