logo

Reversed configuration of photocatalyst to exhibit improved properties of basic processes compared to conventional one

More info
  • ReceivedJan 16, 2020
  • AcceptedApr 20, 2020
  • PublishedMay 7, 2020

Abstract


Funded by

the National Natural Science Foundation of China(21633009,21925206)

Chinese Academy of Sciences(DNL,201913)

International Partnership Program of Chinese Academy of Sciences(121421KYSB20190025)

the DICP foundation of innovative research(DICP,I201927)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21633009, 21925206); the Dalian National Laboratory For Clean Energy (DNL) Cooperation Fund, Chinese Academy of Sciences (DNL 201913), International Partnership Program of Chinese Academy of Sciences (121421KYSB20190025) and the DICP foundation of innovative research (DICP I201927). F. Zhang thanks the support from Liaoning Revitalization Talents Program (XLYC1807241).


Interest statement

The authors declare that they have no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Fujishima A, Honda K. Nature, 1972, 238: 37-38 CrossRef PubMed ADS Google Scholar

[2] Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong JR. J Am Chem Soc, 2011, 133: 10878-10884 CrossRef PubMed Google Scholar

[3] Hitoki G, Ishikawa A, Takata T, Kondo JN, Hara M, Domen K. Chem Lett, 2002, 31: 736-737 CrossRef Google Scholar

[4] Chen S, Shen S, Liu G, Qi Y, Zhang F, Li C. Angew Chem Int Ed, 2015, 54: 3047-3051 CrossRef PubMed Google Scholar

[5] Chen S, Qi Y, Ding Q, Li Z, Cui J, Zhang F, Li C. J Catal, 2016, 339: 77-83 CrossRef Google Scholar

[6] Zheng D, Cao XN, Wang X. Angew Chem Int Ed, 2016, 55: 11512-11516 CrossRef PubMed Google Scholar

[7] Hitoki G, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K. Chem Commun, 2002, : 1698-1699 CrossRef Google Scholar

[8] Maeda K, Terashima H, Kase K, Higashi M, Tabata M, Domen K. BCSJ, 2008, 81: 927-937 CrossRef Google Scholar

[9] Kailasam K, Schmidt J, Bildirir H, Zhang G, Blechert S, Wang X, Thomas A. Macromol Rapid Commun, 2013, 34: 1008-1013 CrossRef PubMed Google Scholar

[10] Kiss B, Didier C, Johnson T, Manning TD, Dyer MS, Cowan AJ, Claridge JB, Darwent JR, Rosseinsky MJ. Angew Chem Int Ed, 2014, 53: 14480-14484 CrossRef PubMed Google Scholar

[11] Liu GL, Chen CC, Ji HW, Ma WH, Zhao JC. Sci China Chem, 2012, 55: 1953-1958 CrossRef Google Scholar

[12] Ling X, Xu Y, Wu S, Liu M, Yang P, Qiu C, Zhang G, Zhou H, Su C. Sci China Chem, 2020, 63: 386-392 CrossRef Google Scholar

[13] Schweinberger FF, Berr MJ, Döblinger M, Wolff C, Sanwald KE, Crampton AS, Ridge CJ, Jäckel F, Feldmann J, Tschurl M, Heiz U. J Am Chem Soc, 2013, 135: 13262-13265 CrossRef PubMed Google Scholar

[14] Dukovic G, Merkle MG, Nelson JH, Hughes SM, Alivisatos AP. Adv Mater, 2008, 20: 4306-4311 CrossRef Google Scholar

[15] Li Z, Zhang F, Han J, Zhu J, Li M, Zhang B, Fan W, Lu J, Li C. Catal Lett, 2018, 148: 933-939 CrossRef Google Scholar

[16] Maeda K, Teramura K, Domen K. J Catal, 2008, 254: 198-204 CrossRef Google Scholar

[17] Wen B, Ma JH, Chen CC, Ma WH, Zhu HY, Zhao JC. Sci China Chem, 2011, 54: 887-897 CrossRef Google Scholar

[18] Wang Q, Hisatomi T, Jia Q, Tokudome H, Zhong M, Wang C, Pan Z, Takata T, Nakabayashi M, Shibata N, Li Y, Sharp ID, Kudo A, Yamada T, Domen K. Nat Mater, 2016, 15: 611-615 CrossRef PubMed ADS Google Scholar

[19] Yang J, Wang D, Han H, Li C. Acc Chem Res, 2013, 46: 1900-1909 CrossRef PubMed Google Scholar

[20] Ran J, Gao G, Li FT, Ma TY, Du A, Qiao SZ. Nat Commun, 2017, 8: 13907 CrossRef PubMed ADS Google Scholar

[21] Wang D, Li X, Zheng LL, Qin LM, Li S, Ye P, Li Y, Zou JP. Nanoscale, 2018, 10: 19509-19516 CrossRef PubMed Google Scholar

[22] Xiao M, Luo B, Lyu M, Wang S, Wang L. Adv Energy Mater, 2018, 8: 1701605 CrossRef Google Scholar

[23] Yan H, Yang J, Ma G, Wu G, Zong X, Lei Z, Shi J, Li C. J Catal, 2009, 266: 165-168 CrossRef Google Scholar

[24] Shi Y, Zhang B. Chem Soc Rev, 2016, 45: 1529-1541 CrossRef PubMed Google Scholar

[25] Shi X, Wu A, Yan H, Zhang L, Tian C, Wang L, Fu H. J Mater Chem A, 2018, 6: 20100-20109 CrossRef Google Scholar

[26] Yan H, Xie Y, Jiao Y, Wu A, Tian C, Zhang X, Wang L, Fu H. Adv Mater, 2018, 30: 1704156 CrossRef PubMed Google Scholar

[27] Zhu Y, Chen G, Xu X, Yang G, Liu M, Shao Z. ACS Catal, 2017, 7: 3540-3547 CrossRef Google Scholar

[28] Chen YY, Zhang Y, Jiang WJ, Zhang X, Dai Z, Wan LJ, Hu JS. ACS Nano, 2016, 10: 8851-8860 CrossRef Google Scholar

[29] Wang S, Wang J, Zhu M, Bao X, Xiao B, Su D, Li H, Wang Y. J Am Chem Soc, 2015, 137: 15753-15759 CrossRef PubMed Google Scholar

[30] Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H. J Am Chem Soc, 2011, 133: 7296-7299 CrossRef PubMed Google Scholar

[31] Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I. Science, 2007, 317: 100-102 CrossRef PubMed ADS Google Scholar

[32] Tu W, Li Y, Kuai L, Zhou Y, Xu Q, Li H, Wang X, Xiao M, Zou Z. Nanoscale, 2017, 9: 9065-9070 CrossRef PubMed Google Scholar

[33] Wang W, Zhu S, Cao Y, Tao Y, Li X, Pan D, Phillips DL, Zhang D, Chen M, Li G, Li H. Adv Funct Mater, 2019, 29: 1901958 CrossRef Google Scholar

[34] Shi H, Long S, Hu S, Hou J, Ni W, Song C, Li K, Gurzadyan GG, Guo X. Appl Catal B-Environ, 2019, 245: 760-769 CrossRef Google Scholar

[35] Chen H, Sun Z, Ye S, Lu D, Du P. J Mater Chem A, 2015, 3: 15729-15737 CrossRef Google Scholar

[36] Zhang H, Lin J, Li Z, Li T, Jia X, Wu XL, Hu S, Lin H, Chen J, Zhu J. Catal Sci Technol, 2019, 9: 502-508 CrossRef Google Scholar

[37] Liu G, Shi J, Zhang F, Chen Z, Han J, Ding C, Chen S, Wang Z, Han H, Li C. Angew Chem Int Ed, 2014, 53: 7295-7299 CrossRef PubMed Google Scholar

[38] Wang B, Huang H, Huang M, Yan P, Isimjan TT, Yang X. Sci China Chem, 2020, CrossRef Google Scholar

[39] Fu Q, Bao X. Nat Catal, 2019, 2: 834-836 CrossRef Google Scholar

[40] Wang T, Gao L, Hou J, Herou SJA, Griffiths JT, Li W, Dong J, Gao S, Titirici MM, Kumar RV, Cheetham AK, Bao X, Fu Q, Smoukov SK. Nat Commun, 2019, 10: 1340-1348 CrossRef PubMed ADS Google Scholar

[41] Wang Y, Mao J, Meng X, Yu L, Deng D, Bao X. Chem Rev, 2019, 119: 1806-1854 CrossRef PubMed Google Scholar

[42] Cui T, Dong J, Pan X, Yu T, Fu Q, Bao X. J Energy Chem, 2019, 28: 123-127 CrossRef Google Scholar

[43] Li H, Guo C, Fu Q, Xiao J. J Phys Chem Lett, 2019, 10: 533-539 CrossRef PubMed Google Scholar

[44] Bae JH, Han JH, Chung TD. Phys Chem Chem Phys, 2012, 14: 448-463 CrossRef PubMed ADS Google Scholar

[45] Zhang J, Li CM. Chem Soc Rev, 2012, 41: 7016-7031 CrossRef PubMed Google Scholar

[46] Moniz SJA, Shevlin SA, Martin DJ, Guo ZX, Tang J. Energy Environ Sci, 2015, 8: 731-759 CrossRef Google Scholar

  • Figure 1

    (a) An illustration on the preparation of Mo2N@CdS core-shell structures. (b) XRD patterns of the MoO3 hexagonal rods, Mo2N hexagonal rods, Mo2N@CdS and CdS samples. SEM images of the MoO3 hexagonal rods (c), Mo2N hexagonal rods (d) and Mo2N@CdS core-shell structures (e) (color online).

  • Figure 2

    Comparison of the photocatalytic H2 evolution performance on typical samples. (a) Time courses of H2 evolution; (b) the average H2 generation rate. Reaction conditions: 20 mg CdS; 100 mL, 10 vol% lactic acid aqueous solution; 300 W xenon lamp (λ³420 nm); reaction time: 5 h (color online).

  • Figure 3

    The charge separation performance of the typical three samples. (a) Steady PL spectra; (b) TRPL decay spectra; (c) transient photocurrent responses recorded at the potential of 0.9 V vs. RHE in 0.5 M Na2S and 0.5 M Na2SO3; (d) Nyquist plots tested at 0.9 V vs. RHE; frequency: 0.1 Hz–10 kHz (color online).

  • Figure 4

    The performances of surface catalysis and light absorption of the Mo2N@CdS. (a) Current density curves as a function of the applied potential of the CdS, Mo2N rod and CdS/Mo2N-rod samples; (b) high-resolution XPS spectra of Mo 3d for Mo2N rods and Mo2N@CdS samples; (c) UV-Vis transmittance spectra of CdS films on FTO (color online).

qqqq

Contact and support