logo

Molecular engineering of an electron-transport triarylphosphine oxide-triazine conjugate toward high-performance phosphorescent organic light-emitting diodes with remarkable stability

More info
  • ReceivedJan 8, 2020
  • AcceptedFeb 29, 2020
  • PublishedApr 9, 2020

Abstract


Funded by

the National Key Research and Development Program of China(2016YFB0400701)

Natural Science Foundation of Guangdong Joint Program(U1801258,U1301243)

and Department of Science and Technology of Guangdong Province(2019B010924003)


Acknowledgment

This work was supported by the National Key Research and Development Program of China (2016YFB0400701), Natural Science Foundation of Guangdong Joint Program (U1801258, U1301243), and Department of Science and Technology of Guangdong Province (2019B010924003).


Interest statement

The authors declare that they have no conflict of interest.


Supplement

Supporting Information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Tang CW, VanSlyke SA. Appl Phys Lett, 1987, 51: 913-915 CrossRef ADS Google Scholar

[2] Kido J, Hongawa K, Okuyama K, Nagai K. Appl Phys Lett, 1994, 64: 815-817 CrossRef ADS Google Scholar

[3] Kido J, Hayase H, Hongawa K, Nagai K, Okuyama K. Appl Phys Lett, 1994, 65: 2124-2126 CrossRef ADS Google Scholar

[4] Lamansky S, Kwong RC, Nugent M, Djurovich PI, Thompson ME. Org Electron, 2001, 2: 53-62 CrossRef Google Scholar

[5] Jin G, Liu JZ, Zou JH, Huang XL, He MJ, Peng L, Chen LL, Zhu XH, Peng J, Cao Y. Sci Bull, 2018, 63: 446-451 CrossRef Google Scholar

[6] Tanaka M, Noda H, Nakanotani H, Adachi C. Adv Electron Mater, 2019, 5: 1800708 CrossRef Google Scholar

[7] Meerheim R, Scholz S, Schwartz G, Reineke S, Olthof S, Walzer K, Leo K. Proc SPIE, 2008, 6999: 699917. Google Scholar

[8] Tan WY, Zou JH, Gao DY, Liu JZ, Chen NN, Zhu XH, Peng J, Cao Y. Adv Electron Mater, 2016, 2: 1600101 CrossRef Google Scholar

[9] Wei XF, Tan WY, Zou JH, Guo QX, Gao DY, Ma DG, Peng J, Cao Y, Zhu XH. J Mater Chem C, 2017, 5: 2329-2336 CrossRef Google Scholar

[10] Fleissner A, Stegmaier K, Melzer C, von Seggern H, Schwalm T, Rehahn M. Chem Mater, 2009, 21: 4288-4298 CrossRef Google Scholar

[11] Becker H, Bach I, Holbach M, Schwaiger J, Spreitzer H. SID Symposium Digest, 2010, 41: 39-42 CrossRef Google Scholar

[12] Fujimoto H, Yahiro M, Yukiwaki S, Kusuhara K, Nakamura N, Suekane T, Wei H, Imanishi K, Inada K, Adachi C. Appl Phys Lett, 2016, 109: 243302 CrossRef ADS Google Scholar

[13] Von Ruden AL, Cosimbescu L, Polikarpov E, Koech PK, Swensen JS, Wang L, Darsell JT, Padmaperuma AB. Chem Mater, 2010, 22: 5678-5686 CrossRef Google Scholar

[14] Tan WY, Wang R, Li M, Liu G, Chen P, Li XC, Lu SM, Zhu HL, Peng QM, Zhu XH, Chen W, Choy WCH, Li F, Peng J, Cao Y. Adv Funct Mater, 2014, 24: 6540-6547 CrossRef Google Scholar

[15] Yin X, Zhang T, Peng Q, Zhou T, Zeng W, Zhu Z, Xie G, Li F, Ma D, Yang C. J Mater Chem C, 2015, 3: 7589-7596 CrossRef Google Scholar

[16] Chakravarthi N, Gunasekar K, Cho W, Long DX, Kim YH, Song CE, Lee JC, Facchetti A, Song M, Noh YY, Jin SH. Energy Environ Sci, 2016, 9: 2595-2602 CrossRef Google Scholar

[17] Naik S, Kumaravel M, Mague JT, Balakrishna MS. Inorg Chem, 2014, 53: 1370-1381 CrossRef PubMed Google Scholar

[18] Hung WY, Fang GC, Lin SW, Cheng SH, Wong KT, Kuo TY, Chou PT. Sci Rep, 2014, 4: 5161 CrossRef PubMed ADS Google Scholar

[19] Jia J, Zhu L, Wei Y, Wu Z, Xu H, Ding D, Chen R, Ma D, Huang W. J Mater Chem C, 2015, 3: 4890-4902 CrossRef Google Scholar

[20] Zhang H, Tan WY, Fladischer S, Ke L, Ameri T, Li N, Turbiez M, Spiecker E, Zhu XH, Cao Y, Brabec CJ. J Mater Chem A, 2016, 4: 5032-5038 CrossRef Google Scholar

[21] Wang K, Neophytou M, Aydin E, Wang M, Laurent T, Harrison GT, Liu J, Liu W, De Bastiani M, Khan JI, Anthopoulos TD, Laquai F, De Wolf S. Adv Mater Interfaces, 2019, 6: 1900434 CrossRef Google Scholar

[22] Seitkhan A, Neophytou M, Kirkus M, Abou‐Hamad E, Hedhili MN, Yengel E, Firdaus Y, Faber H, Lin Y, Tsetseris L, McCulloch I, Anthopoulos TD. Adv Funct Mater, 2019, 29: 1905810 CrossRef Google Scholar

[23] Chen NN, Tan WY, Liu JZ, Zhou JH, Gao DY, Chen LL, Peng JB, Cao Y, Zhu XH. Org Electron, 2017, 48: 271-275 CrossRef Google Scholar

[24] Fink R, Frenz C, Thelakkat M, Schmidt HW. Macromolecules, 1997, 30: 8177-8181 CrossRef ADS Google Scholar

[25] Hirai M, Tanaka N, Sakai M, Yamaguchi S. Chem Rev, 2019, 119: 8291-8331 CrossRef PubMed Google Scholar

  • Figure 1

    Chemical structure of BPTRZ-Py-TPO (color online).

  • Scheme 1

    Synthetic route to BPTRZ-Py-TPO: i) Pd(PPh3)4, 2 M Na2CO3 aqueous solution, ethanol, toluene, 90 °C; ii) bis(pinacolato)diboron, Pd(PPh3)2Cl2, anhydrous KOAc, THF, 80 °C (color online).

  • Figure 2

    (a) Thermogravimetric analysis and (b) DSC diagrams of BPTRZ-Py-TPO (color online).

  • Figure 3

    (a) Normalized UV absorbance (Abs) and fluorescence (FL) spectra of BPTRZ-Py-TPO in CH2Cl2 (~1.0´10–5 mol L–1) and as film on quartz glass, excitation: 310 nm. (b) Normalized phosphorescence spectrum of BPTRZ-Py-TPO was collected after delay time of 1 ms upon excitation at 77 K in solid state, excitation: 350 nm (color online).

  • Figure 4

    UPS spectra (a) at the low kinetic energy region and (b) at the valence band near the Fermi level for 10 nm BPTRZ-Py-TPO on ITO, respectively (color online).

  • Figure 5

    J-V characteristic of the electron-only device: ITO/BPTRZ-Py-TPO:Liq (1:1 wt/wt, 150 nm)/Al) (color online)

  • Figure 6

    (a) J-V-L, (b) LE-L, (c) PE-L curves, and (d) EL spectra of the green PHOLEDs (ITO/OMET-P008:p-dopant (100 nm, 4%)/HTL(15 nm)/EBL(5 nm)/HOST1:HOST2:Ir(ppy)2(m-mbppy) (30 nm, 1:1:0.3)/ETM:Liq(30 nm, 1:1 wt/wt)/Al). ETM=BPTRZ-Py-TPO and Phen-NaDPO (color online).

  • Figure 7

    Luminance decay characteristics of the encapsulated bottom-emission green OLEDs (ITO/OMET-P008:p-dopant(100 nm, 4%)/HTL(15 nm)/EBL(5 nm)/HOST1:HOST2:Ir(ppy)2(m-mbppy)(30 nm, 1:1:0.3)/ETM:Liq(30 nm, 1:1 wt/wt)/Al), driven under a constant current. ETM=BPTRZ-Py-TPO and Phen-NaDPO. The initial luminance was set as ca. 1000 cd m–2. Prior to testing, both OLEDs aged at a current density of 20 mA cm–2 for 24 h(color online).

  • Table 1   Table 1 Summary of the OLED data

    GreenPHOLEDs

    ETM

    @ ca. 1000 cd m−2

    Lifetime

    @1000 nit (h)

    CIE(x, y)

    V (V)

    J (mA cm−2)

    LE (cd A−1)

    PE (lm W−1)

    EQE (%)

    Bottomemission

    BPTRZ-Py-TPO

    3

    1.88

    62.6

    65.6

    16.9

    828(t95)

    (0.32, 0.64)

    Phen-NaDPO

    3.2

    2.03

    52.1

    51.2

    14.0

    455(t95)

    (0.31, 0.64)

    Top emission

    BPTRZ-Py-TPO

    2.8

    1.35

    77.4

    86.8

    18.7

    >640(t99)

    (0.24, 0.72)

qqqq

Contact and support