β-galactosidase responsive AIE fluorogene for identification and removal of senescent cancer cells

More info
  • ReceivedSep 20, 2019
  • AcceptedDec 4, 2019
  • PublishedFeb 18, 2020


Funded by

the National Science Fund for Distinguished Young Scholars(31825012)

the National Key Research and Development Program of China(2017YFC2103502)

the Fundamental Research Funds for the Central Universities

National Natural Science Fundation of China(31870949,21875116)

and Tianjin Science Fund for Distinguished Young Scholars(17JCJQJC44900)


This work was supported by the National Key Research and Development Program of China (2017YFC2103502, 2017YFE0132200), the Fundamental Research Funds for the Central Universities, the National Natural Science Fundation of China (31870949, 31670973), and Tianjin Science Fund for Distinguished Young Scholars (17JCJQJC44900).

Interest statement

The authors declare that they have no conflict of interest.

Contributions statement

These authors contributed equally to this work.


Supporting information

The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


[1] He S, Sharpless NE. Cell, 2017, 169: 1000-1011 CrossRef PubMed Google Scholar

[2] Saleh T, Tyutyunyk-Massey L, Gewirtz DA. Cancer Res, 2019, 79: 1044-1046 CrossRef PubMed Google Scholar

[3] Zhang B, Fu D, Xu Q, Cong X, Wu C, Zhong X, Ma Y, Lv Z, Chen F, Han L, Qian M, Chin YE, Lam EWF, Chiao P, Sun Y. Nat Commun, 2018, 9: 1723 CrossRef PubMed Google Scholar

[4] Milanovic M, Fan DNY, Belenki D, Däbritz JHM, Zhao Z, Yu Y, Dörr JR, Dimitrova L, Lenze D, Monteiro Barbosa IA, Mendoza-Parra MA, Kanashova T, Metzner M, Pardon K, Reimann M, Trumpp A, Dörken B, Zuber J, Gronemeyer H, Hummel M, Dittmar G, Lee S, Schmitt CA. Nature, 2018, 553: 96-100 CrossRef PubMed Google Scholar

[5] Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J, Janakiraman K, Sharpless NE, Ding S, Feng W, Luo Y, Wang X, Aykin-Burns N, Krager K, Ponnappan U, Hauer-Jensen M, Meng A, Zhou D. Nat Med, 2016, 22: 78-83 CrossRef PubMed Google Scholar

[6] Scudellari M. Nature, 2017, 550: 448-450 CrossRef PubMed Google Scholar

[7] Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, Pogue BW, Hasan T. Chem Rev, 2010, 110: 2795-2838 CrossRef PubMed Google Scholar

[8] Dolmans DEJGJ, Fukumura D, Jain RK. Nat Rev Cancer, 2003, 3: 380-387 CrossRef PubMed Google Scholar

[9] Wang D, Su H, Kwok RTK, Hu X, Zou H, Luo Q, Lee MMS, Xu W, Lam JWY, Tang BZ. Chem Sci, 2018, 9: 3685-3693 CrossRef PubMed Google Scholar

[10] Xu S, Yuan Y, Cai X, Zhang CJ, Hu F, Liang J, Zhang G, Zhang D, Liu B. Chem Sci, 2015, 6: 5824-5830 CrossRef PubMed Google Scholar

[11] Liang J, Tang BZ, Liu B. Chem Soc Rev, 2015, 44: 2798-2811 CrossRef PubMed Google Scholar

[12] Ding S, Liu M, Hong Y. Sci China Chem, 2018, 61: 882-891 CrossRef Google Scholar

[13] Zhou Y, Liu H, Zhao N, Wang Z, Michael MZ, Xie N, Tang BZ, Tang Y. Sci China Chem, 2018, 61: 892-897 CrossRef Google Scholar

[14] Bai Y, Liu D, Han Z, Chen Y, Chen Z, Jiao Y, He W, Guo Z. Sci China Chem, 2018, 61: 1413-1422 CrossRef Google Scholar

[15] Baysec S, Minotto A, Klein P, Poddi S, Zampetti A, Allard S, Cacialli F, Scherf U. Sci China Chem, 2018, 61: 932-939 CrossRef Google Scholar

[16] Shimizu M, Nakatani M, Nishimura K. Sci China Chem, 2018, 61: 925-931 CrossRef Google Scholar

[17] Wang Z, Zhou F, Wang J, Zhao Z, Qin A, Yu Z, Tang BZ. Sci China Chem, 2018, 61: 76-87 CrossRef Google Scholar

[18] Jurk D, Wang C, Miwa S, Maddick M, Korolchuk V, Tsolou A, Gonos ES, Thrasivoulou C, Jill Saffrey M, Cameron K, von Zglinicki T. Aging Cell, 2012, 11: 996-1004 CrossRef PubMed Google Scholar

[19] Shi J, Schneider JP. Angew Chem, 2019, : 13844-13848 CrossRef Google Scholar

[20] Tang W, Zhao Z, Chong Y, Wu C, Liu Q, Yang J, Zhou R, Lian ZX, Liang G. ACS Nano, 2018, 12: 9966-9973 CrossRef Google Scholar

[21] Wang H, Liu J, Han A, Xiao N, Xue Z, Wang G, Long J, Kong D, Liu B, Yang Z, Ding D. ACS Nano, 2014, 8: 1475-1484 CrossRef PubMed Google Scholar

[22] Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O. Proc Natl Acad Sci USA, 1995, 92: 9363-9367 CrossRef PubMed Google Scholar

[23] Brown N, Lei J, Zhan C, Shimon LJW, Adler-Abramovich L, Wei G, Gazit E. ACS Nano, 2018, 12: 3253-3262 CrossRef Google Scholar

[24] Kubota R, Liu S, Shigemitsu H, Nakamura K, Tanaka W, Ikeda M, Hamachi I. Bioconjugate Chem, 2018, 29: 2058-2067 CrossRef PubMed Google Scholar

[25] Zhao F, Weitzel CS, Gao Y, Browdy HM, Shi J, Lin HC, Lovett ST, Xu B. Nanoscale, 2011, 3: 2859-2861 CrossRef PubMed Google Scholar

[26] Wang H, Feng Z, Qin Y, Wang J, Xu B. Angew Chem Int Ed, 2018, 57: 4931-4935 CrossRef PubMed Google Scholar

[27] Yang Z, Liang G, Wang L, Xu B. J Am Chem Soc, 2006, 128: 3038-3043 CrossRef PubMed Google Scholar

[28] Zhan J, Cai Y, He S, Wang L, Yang Z. Angew Chem Int Ed, 2018, 57: 1813-1816 CrossRef PubMed Google Scholar

[29] Xu T, Cai Y, Zhong X, Zhang L, Zheng D, Gao Z, Pan X, Wang F, Chen M, Yang Z. Chem Commun, 2019, : 7175-7178 CrossRef PubMed Google Scholar

[30] Chang B-D, Broude EV, Dokmanovic M, Zhu H, Ruth A, Xuan Y, Kandel ES, Lausch E, Christov K, Roninson IB. Cancer Res, 1999, 59: 3761–3767. Google Scholar

[31] Ewald JA, Desotelle JA, Wilding G, Jarrard DF. J Natl Cancer Institute, 2010, 102: 1536-1546 CrossRef PubMed Google Scholar

[32] Wang W, Vellaisamy K, Li G, Wu C, Ko CN, Leung CH, Ma DL. Anal Chem, 2017, 89: 11679-11684 CrossRef PubMed Google Scholar

[33] Lim SH, Thivierge C, Nowak-Sliwinska P, Han J, van den Bergh H, Wagnières G, Burgess K, Lee HB. J Med Chem, 2010, 53: 2865-2874 CrossRef PubMed Google Scholar

[34] Saftig P, Sandhoff K. Nature, 2013, 502: 312-313 CrossRef PubMed Google Scholar

[35] Shen K, Sun L, Zhang H, Xu Y, Qian X, Lu Y, Li Q, Ni L, Liu J. Cancer Lett, 2013, 333: 229-238 CrossRef PubMed Google Scholar

[36] Galluzzi L, Bravo-San Pedro JM, Kroemer G. Nat Cell Biol, 2014, 16: 728-736 CrossRef PubMed Google Scholar

[37] Yosef R, Pilpel N, Tokarsky-Amiel R, Biran A, Ovadya Y, Cohen S, Vadai E, Dassa L, Shahar E, Condiotti R, Ben-Porath I, Krizhanovsky V. Nat Commun, 2016, 7: 11190 CrossRef PubMed Google Scholar

[38] Li Y, Liu Y, Fu Y, Wei T, Le Guyader L, Gao G, Liu RS, Chang YZ, Chen C. Biomaterials, 2012, 33: 402-411 CrossRef PubMed Google Scholar

[39] Youle RJ, Strasser A. Nat Rev Mol Cell Biol, 2008, 9: 47-59 CrossRef PubMed Google Scholar

[40] Kågedal K, Zhao M, Svensson I, Brunk UT. Biochem J, 2001, 359: 335-343 CrossRef Google Scholar

  • Figure 1

    Chemical structures and schematic illustrations of conversion from Comp. 1 to 3 by β-Gal and from Comp. 2 to 3 by ALP (color online).

  • Figure 2

    (a) Fluorescence intensity of Comp. 1 (20 μM) treated with β-Gal (50 U/mL) at different time intervals. (b) The conversion from Comp. 1 to 3 by β-Gal (mean±SD, N=3, SD: standard deviation). TEM images of PBS solution of Comp. 1 (c) before and (d) after treatment with β-Gal (50 U/mL) (color online).

  • Figure 3

    Merged confocal laser scanning microscopy images (blue fluorescence from DAPI and red fluorescence from TPE-ETh-R represent the nucleus and TPE-ETh-R-peptide, respectively) in s- and n-HeLa cells incubated with Comp. 1 (a, b), 2 (c) or 3 (d) (20 μM) for 12 h (color online).

  • Figure 4

    (a) IC50 values of Comp. 1, 2 and 3 to s- and n-HeLa cells in dark or with white light irradiation for 4 min., and (b–e) s-HeLa cells were pre-incubated with Comp. 1 or 2 (20 μM), then DCF-DA was added to detect ROS in dark or with white light irradiation for 2 min (scale bars: 20 μm). Western Blot detection of ROS induced apoptosis from (f) the cytosolic fraction or (g) the whole-cell fraction of s-HeLa cells treated with Comp. 1 (50 μM) (color online).