logo

SCIENCE CHINA Chemistry, Volume 62 , Issue 10 : 1398-1404(2019) https://doi.org/10.1007/s11426-019-9503-0

3D-printed optical-electronic integrated devices

More info
  • ReceivedApr 11, 2019
  • AcceptedMay 14, 2019
  • PublishedJun 27, 2019

Abstract


Funded by

the Ministry of Science and Technology of China(2017YFA0204502)

and the National Natural Science Foundation of China(21533013,21790364)


Acknowledgment

This work was supported by the Ministry of Science and Technology of China (2017YFA0204502), and the National Natural Science Foundation of China (21533013, 21790364).


Interest statement

The authors declare that they have no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Davoyan A, Engheta N. Nat Commun, 2014, 5: 5250 CrossRef PubMed ADS Google Scholar

[2] Xu Q, Schmidt B, Pradhan S, Lipson M. Nature, 2005, 435: 325-327 CrossRef PubMed ADS Google Scholar

[3] High AA, Novitskaya EE, Butov LV, Hanson M, Gossard AC. Science, 2008, 321: 229-231 CrossRef PubMed ADS Google Scholar

[4] Cui QH, Peng Q, Luo Y, Jiang Y, Yan Y, Wei C, Shuai Z, Sun C, Yao J, Zhao YS. Sci Adv, 2018, 4: eaap9861 CrossRef PubMed ADS Google Scholar

[5] Guo P, Hu W, Zhang Q, Zhuang X, Zhu X, Zhou H, Shan Z, Xu J, Pan A. Adv Mater, 2014, 26: 2844-2849 CrossRef PubMed Google Scholar

[6] Huang Y, Zhang Q. Sci China Chem, 2018, 61: 1351-1352 CrossRef Google Scholar

[7] Nam SW, Jiang X, Xiong Q, Ham D, Lieber CM. Proc Natl Acad Sci USA, 2009, 106: 21035-21038 CrossRef PubMed ADS Google Scholar

[8] Pirovano A, Schuegraf K. Nat Nanotech, 2010, 5: 177-178 CrossRef PubMed ADS Google Scholar

[9] Li L, Lin H, Qiao S, Zou Y, Danto S, Richardson K, Musgraves JD, Lu N, Hu J. Nat Photon, 2014, 8: 643-649 CrossRef ADS arXiv Google Scholar

[10] Shulaker MM, Hills G, Park RS, Howe RT, Saraswat K, Wong HSP, Mitra S. Nature, 2017, 547: 74-78 CrossRef PubMed ADS Google Scholar

[11] Greytak AB, Barrelet CJ, Li Y, Lieber CM. Appl Phys Lett, 2005, 87: 151103 CrossRef ADS Google Scholar

[12] Enami Y, Derose CT, Mathine D, Loychik C, Greenlee C, Norwood RA, Kim TD, Luo J, Tian Y, Jen AKY, Peyghambarian N. Nat Photon, 2007, 1: 180-185 CrossRef ADS Google Scholar

[13] Camposeo A, Del Carro P, Persano L, Pisignano D. Adv Mater, 2012, 24: OP221-OP225 CrossRef PubMed Google Scholar

[14] Xiong C, Pernice WHP, Tang HX. Nano Lett, 2012, 12: 3562-3568 CrossRef PubMed ADS arXiv Google Scholar

[15] Deng GW, Bo SH, Zhou TT, Zhang R, Liu JL, Liu XH, Zhen Z, Qiu L. Sci China Chem, 2013, 56: 169-173 CrossRef Google Scholar

[16] Kawata S, Sun HB, Tanaka T, Takada K. Nature, 2001, 412: 697-698 CrossRef PubMed Google Scholar

[17] Fang G, Cao H, Cao L, Duan X. Adv Mater Technol, 2018, 3: 1700271 CrossRef Google Scholar

[18] Lewis JA, Ahn BY. Nature, 2015, 518: 42-43 CrossRef PubMed ADS Google Scholar

[19] Dietrich PI, Blaicher M, Reuter I, Billah M, Hoose T, Hofmann A, Caer C, Dangel R, Offrein B, Troppenz U, Moehrle M, Freude W, Koos C. Nat Photon, 2018, 12: 241-247 CrossRef ADS Google Scholar

[20] Schumann M, Bückmann T, Gruhler N, Wegener M, Pernice W. Light Sci Appl, 2014, 3: e175 CrossRef ADS Google Scholar

[21] Kuehne AJC, Gather MC. Chem Rev, 2016, 116: 12823-12864 CrossRef PubMed Google Scholar

[22] Ta VD, Chen R, Sun HD. Adv Mater, 2012, 24: OP60-OP64 CrossRef PubMed Google Scholar

[23] Wei C, Liu SY, Zou CL, Liu Y, Yao J, Zhao YS. J Am Chem Soc, 2015, 137: 62-65 CrossRef PubMed Google Scholar

[24] Wang Y, Ta VD, Leck KS, Tan BHI, Wang Z, He T, Ohl CD, Demir HV, Sun H. Nano Lett, 2017, 17: 2640-2646 CrossRef PubMed ADS Google Scholar

[25] Stuart MAC, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Nat Mater, 2010, 9: 101-113 CrossRef PubMed ADS Google Scholar

[26] Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Chem Rev, 2015, 115: 11718-11940 CrossRef PubMed Google Scholar

[27] Gu F, Zhang L, Yin X, Tong L. Nano Lett, 2008, 8: 2757-2761 CrossRef PubMed ADS Google Scholar

[28] Liu HL, Wang ST. Sci China Chem, 2014, 57: 552-557 CrossRef Google Scholar

[29] Humar M, Ravnik M, Pajk S, Muševič I. Nat Photon, 2009, 3: 595-600 CrossRef ADS Google Scholar

[30] Döring S, Kollosche M, Rabe T, Stumpe J, Kofod G. Adv Mater, 2011, 23: 4265-4269 CrossRef PubMed Google Scholar

[31] Thompson C, Saraf RF, Jordan-Sweet JL. Langmuir, 1997, 13: 7135-7140 CrossRef Google Scholar

[32] Burek MJ, Chu Y, Liddy MSZ, Patel P, Rochman J, Meesala S, Hong W, Quan Q, Lukin MD, Lončar M. Nat Commun, 2014, 5: 5718 CrossRef PubMed ADS arXiv Google Scholar

[33] Zhao YS, Zhan P, Kim J, Sun C, Huang J. ACS Nano, 2010, 4: 1630-1636 CrossRef PubMed Google Scholar

[34] Zhang Z, Zhao P, Lin P, Sun F. Polymer, 2006, 47: 4893-4896 CrossRef Google Scholar

[35] Lin X, Ling T, Subbaraman H, Guo LJ, Chen RT. Opt Express, 2013, 21: 2110-2117 CrossRef PubMed ADS Google Scholar

[36] Dong H, Wei Y, Zhang W, Wei C, Zhang C, Yao J, Zhao YS. J Am Chem Soc, 2016, 138: 1118-1121 CrossRef PubMed Google Scholar

[37] Di Benedetto F, Camposeo A, Pagliara S, Mele E, Persano L, Stabile R, Cingolani R, Pisignano D. Nat Nanotech, 2008, 3: 614-619 CrossRef PubMed Google Scholar

[38] Xu J, Ma L, Guo P, Zhuang X, Zhu X, Hu W, Duan X, Pan A. J Am Chem Soc, 2012, 134: 12394-12397 CrossRef PubMed Google Scholar

[39] Zhang Q, Ha ST, Liu X, Sum TC, Xiong Q. Nano Lett, 2014, 14: 5995-6001 CrossRef PubMed ADS Google Scholar

[40] Fan F, Turkdogan S, Liu Z, Shelhammer D, Ning CZ. Nat Nanotech, 2015, 10: 796-803 CrossRef PubMed ADS Google Scholar

[41] Eaton SW, Fu A, Wong AB, Ning CZ, Yang P. Nat Rev Mater, 2016, 1: 16028 CrossRef ADS Google Scholar

[42] Dong H, Zhang C, Liu Y, Yan Y, Hu F, Zhao YS. Angew Chem Int Ed, 2018, 57: 3108-3112 CrossRef PubMed Google Scholar

[43] Takazawa K, Inoue J, Mitsuishi K, Takamasu T. Adv Mater, 2011, 23: 3659-3663 CrossRef PubMed Google Scholar

[44] Yang S, Wang Y, Sun H. Adv Opt Mater, 2015, 3: 1136-1162 CrossRef Google Scholar

[45] Zhang C, Zou CL, Zhao Y, Dong CH, Wei C, Wang H, Liu Y, Guo GC, Yao J, Zhao YS. Sci Adv, 2015, 1: e1500257 CrossRef PubMed ADS Google Scholar

[46] Zhang Q, Su R, Liu X, Xing J, Sum TC, Xiong Q. Adv Funct Mater, 2016, 26: 6238-6245 CrossRef Google Scholar

[47] Gao M, Wei C, Lin X, Liu Y, Hu F, Zhao YS. Chem Commun, 2017, 53: 3102-3105 CrossRef PubMed Google Scholar

[48] Diemeer MBJ. Opt Mater, 1998, 9: 192-200 CrossRef ADS Google Scholar

[49] Yılmaz H, Pena-Francesch A, Shreiner R, Jung H, Belay Z, Demirel MC, Özdemir ŞK, Yang L. ACS Photonics, 2017, 4: 2179-2186 CrossRef Google Scholar

[50] Armani D, Min B, Martin A, Vahala KJ. Appl Phys Lett, 2004, 85: 5439-5441 CrossRef ADS Google Scholar

[51] Zhang Z, Keil N. Optics Commun, 2016, 362: 101-114 CrossRef ADS Google Scholar

[52] Xiao Y, Meng C, Wang P, Ye Y, Yu H, Wang S, Gu F, Dai L, Tong L. Nano Lett, 2011, 11: 1122-1126 CrossRef PubMed ADS Google Scholar

[53] Gao H, Fu A, Andrews SC, Yang P. Proc Natl Acad Sci USA, 2013, 110: 865-869 CrossRef PubMed ADS Google Scholar

[54] Ta VD, Chen R, Sun H. Adv Opt Mater, 2014, 2: 220-225 CrossRef Google Scholar

[55] Zhang C, Zou CL, Dong H, Yan Y, Yao J, Zhao YS. Sci Adv, 2017, 3: e1700225 CrossRef PubMed ADS Google Scholar

  • Figure 1

    Schematic illustration of an integrated electrically controlled microlaser module for optoelectronic hybrid integration. Briefly, this module is designed to be a thermo-responsive polymer resonator on top of a chip-scale metal heating circuit. The voltage is applied in-plane with the current transport to provide local-area thermal field, which induces the lasing wavelength change of the upper dye-doped microresonators (color online).

  • Figure 2

    Fabrication of microlasers. (a) Schematic illustration of the fabrication of microlaser modules by FsLDW. A thin film was spin-coated from a photoresist solution and controllably exposed by a femtosecond laser beam (800 nm, 80 MHz), resulting in various microscale structures after sequential post baking and developing. (b, c) Side- and top-view SEM images of the printed microdisk resonator, showing the smoothness and 3D geometry of the printed structures. Scale bars: 2.5 μm. (d) Bright field optical microscopy image and (e) corresponding photoluminescence (PL) image of the microdisks with different sizes under UV light radiation (330–380 nm). Scale bars: 50 μm (color online).

  • Figure 3

    Lasing characteristics of the single dye-doped microdisks. (a) PL spectra from an individual microdisk under different pump pulse energies. The emergence of sharp peaks indicates the occurrence of lasing behavior. Inset: corresponding PL image of the microdisk. Scale bar: 10 μm. (b) Plots of PL peak intensity versus pump pulse energy, showing the lasing threshold of 49.25 nJ. (c) The simulated electric field distribution of printed microdisk (λ=620 nm,n=1.58). (d) Temperature dependent lasing spectra of a single disk microlaser. (e) Various lasing modes labelled in Figure 3(d) versus the temperature, indicating that the responsive behavior is the same for different resonant modes. (f) The plot and fitted curve of the mode spacing versus temperature (color online).

  • Figure 4

    Lasing characteristics of the coupled microstructures. (a) Side-view SEM images of the waveguide-coupled microdisk. Inset: corresponding top-view image. Scale bar: 10 μm. (b) Simulated electric field distribution (top) and corresponding PL image (bottom) of the waveguide-coupled microdisk under laser excitation. When a 532 nm femtosecond pulsed laser beam was focused at the disk edge, bright PL spots were observed at the tip of the waveguide, demonstrating the strong coupling between them. (c) Spatially resolved PL spectra collected from the waveguide tip and disk with the disk excited locally at different temperatures. (d) Side-view SEM image (top) and simulated electric field distribution (bottom) of coupled double-microdisk resonator with uniform size. Scale bar: 5 μm. (e) PL spectra of the coupled double microdisks as a function of pump pulse energy, demonstrating that the coupled structure provides an effective mode selection effect. Inset: PL image under laser excitation. Scale bar: 10 μm. (f) Lasing wavelength of the RhB-doped microlaser versus the temperature (color online).

  • Figure 5

    Electrically modulated microlaser module. (a) Schematic illustration of the 3D-printed electrically modulated microlaser module. Coupled microdisk resonator was adopted to provide single-mode lasing, which is further modulated by the electric current-assisted thermal field. (b) The 2D surface profile with its corresponding bright-field image (top) and height profile (bottom) of a micro heating circuit. Scale bar: 50 μm. (c) Normalized radical profiles of electrically induced thermal field along the long axis of chip-scale Joule heater, indicating that the effective modulation area can be limited around the specific integrated microlasers. (d) Normalized single mode lasing spectra of the coupled double-disk laser source with voltage applied changing from 0 to 10 V. (e) Lasing wavelength of the RhB-doped microlaser versus the voltage. (f) Cyclic on/off switching behavior (color online).

qqqq

Contact and support