SCIENCE CHINA Chemistry, Volume 62 , Issue 9 : 1257-1262(2019) https://doi.org/10.1007/s11426-019-9487-0

Lead-free thermochromic perovskites with tunable transition temperatures for smart window applications

More info
  • ReceivedFeb 20, 2019
  • AcceptedApr 28, 2019
  • PublishedJul 11, 2019



the Ministry of Science and Technology of China(2017YFA0204502)

the National Natural Science Foundation of China(21873105)


This work was supported by the Ministry of Science and Technology of China (2017YFA0204502) and the National Natural Science Foundation of China (21873105). The authors appreciate the 1W1B and 1W2A stations in Beijing Synchrotron Radiation Facility.

Interest statement

The authors declare that they have no conflict of interest.

Supplementary data

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


[1] Arora N, Dar MI, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin SM, Grätzel M. Science, 2017, 358768-771 CrossRef PubMed ADS Google Scholar

[2] Snaith HJ, Hacke P. Nat Energy, 2018, 3459-465 CrossRef ADS Google Scholar

[3] Tsai H, Nie W, Blancon JC, Stoumpos CC, Asadpour R, Harutyunyan B, Neukirch AJ, Verduzco R, Crochet JJ, Tretiak S, Pedesseau L, Even J, Alam MA, Gupta G, Lou J, Ajayan PM, Bedzyk MJ, Kanatzidis MG, Mohite AD. Nature, 2016, 536312-316 CrossRef PubMed ADS Google Scholar

[4] Meng L, You J, Yang Y. Nat Commun, 2018, 95265 CrossRef PubMed ADS Google Scholar

[5] Xiao J, Shi J, Li D, Meng Q. Sci China Chem, 2015, 58221-238 CrossRef Google Scholar

[6] Liu X, Huang P, Dong Q, Wang Z, Zhang K, Yu H, Lei M, Zhou Y, Song B, Li Y. Sci China Chem, 2017, 60136-143 CrossRef Google Scholar

[7] Grancini G, Nazeeruddin MK. Nat Rev Mater, 2019, 4: 4-22. Google Scholar

[8] Yuan M, Quan LN, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y, Beauregard EM, Kanjanaboos P, Lu Z, Kim DH, Sargent EH. Nat Nanotech, 2016, 11872-877 CrossRef PubMed ADS Google Scholar

[9] Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W. Nature, 2018, 562249-253 CrossRef PubMed ADS Google Scholar

[10] Peng M, Wen W, Chen S, Chen B, Yan K, Hu H, Dong B, Gao X, Yu X, Jiang X, Zou D. Sci China Chem, 2016, 59653-658 CrossRef Google Scholar

[11] Xing G, Mathews N, Lim SS, Yantara N, Liu X, Sabba D, Grätzel M, Mhaisalkar S, Sum TC. Nat Mater, 2014, 13476-480 CrossRef PubMed ADS Google Scholar

[12] Zhu H, Fu Y, Meng F, Wu X, Gong Z, Ding Q, Gustafsson MV, Trinh MT, Jin S, Zhu XY. Nat Mater, 2015, 14636-642 CrossRef PubMed ADS Google Scholar

[13] Li YJ, Lv Y, Zou CL, Zhang W, Yao J, Zhao YS. J Am Chem Soc, 2016, 1382122-2125 CrossRef PubMed Google Scholar

[14] Zhang W, Peng L, Liu J, Tang A, Hu JS, Yao J, Zhao YS. Adv Mater, 2016, 284040-4046 CrossRef PubMed Google Scholar

[15] Wang Y, Li X, Song J, Xiao L, Zeng H, Sun H. Adv Mater, 2015, 277101-7108 CrossRef PubMed Google Scholar

[16] Tang B, Dong H, Sun L, Zheng W, Wang Q, Sun F, Jiang X, Pan A, Zhang L. ACS Nano, 2017, 1110681-10688 CrossRef Google Scholar

[17] You YM, Liao WQ, Zhao D, Ye HY, Zhang Y, Zhou Q, Niu X, Wang J, Li PF, Fu DW, Wang Z, Gao S, Yang K, Liu JM, Li J, Yan Y, Xiong RG. Science, 2017, 357306-309 CrossRef PubMed ADS Google Scholar

[18] Fang Y, Dong Q, Shao Y, Yuan Y, Huang J. Nat Photon, 2015, 9679-686 CrossRef ADS Google Scholar

[19] Hsiao YC, Wu T, Zang H, Li M, Hu B. Sci China Chem, 2015, 58239-247 CrossRef Google Scholar

[20] Zhang C, Sun D, Sheng CX, Zhai YX, Mielczarek K, Zakhidov A, Vardeny ZV. Nat Phys, 2015, 11427-434 CrossRef ADS Google Scholar

[21] Hsiao YC, Wu T, Li M, Hu B. Adv Mater, 2015, 272899-2906 CrossRef PubMed Google Scholar

[22] Long G, Jiang C, Sabatini R, Yang Z, Wei M, Quan LN, Liang Q, Rasmita A, Askerka M, Walters G, Gong X, Xing J, Wen X, Quintero-Bermudez R, Yuan H, Xing G, Wang XR, Song D, Voznyy O, Zhang M, Hoogland S, Gao W, Xiong Q, Sargent EH. Nat Photon, 2018, 12528-533 CrossRef ADS Google Scholar

[23] Wei H, DeSantis D, Wei W, Deng Y, Guo D, Savenije TJ, Cao L, Huang J. Nat Mater, 2017, 16826-833 CrossRef PubMed ADS Google Scholar

[24] Ha ST, Shen C, Zhang J, Xiong Q. Nat Photon, 2016, 10115-121 CrossRef ADS Google Scholar

[25] Kim GY, Senocrate A, Yang TY, Gregori G, Grätzel M, Maier J. Nat Mater, 2018, 17445-449 CrossRef PubMed ADS Google Scholar

[26] Lin J, Lai M, Dou L, Kley CS, Chen H, Peng F, Sun J, Lu D, Hawks SA, Xie C, Cui F, Alivisatos AP, Limmer DT, Yang P. Nat Mater, 2018, 17261-267 CrossRef PubMed ADS Google Scholar

[27] Halder A, Choudhury D, Ghosh S, Subbiah AS, Sarkar SK. J Phys Chem Lett, 2015, 63180-3184 CrossRef Google Scholar

[28] Ferreira CF, Pérez-Cordero EE, Abboud KA, Talham DR. Chem Mater, 2016, 285522-5529 CrossRef Google Scholar

[29] De Bastiani M, Saidaminov MI, Dursun I, Sinatra L, Peng W, Buttner U, Mohammed OF, Bakr OM. Chem Mater, 2017, 293367-3370 CrossRef Google Scholar

[30] Wheeler LM, Moore DT, Ihly R, Stanton NJ, Miller EM, Tenent RC, Blackburn JL, Neale NR. Nat Commun, 2017, 81722 CrossRef PubMed ADS Google Scholar

[31] Cortecchia D, Dewi HA, Yin J, Bruno A, Chen S, Baikie T, Boix PP, Grätzel M, Mhaisalkar S, Soci C, Mathews N. Inorg Chem, 2016, 551044-1052 CrossRef PubMed Google Scholar

[32] Bloomquist DR, Pressprich MR, Willett RD. J Am Chem Soc, 1988, 1107391-7398 CrossRef Google Scholar

[33] Willett RD, Haugen JA, Lebsack J, Morrey J. Inorg Chem, 1974, 132510-2513 CrossRef Google Scholar

[34] Riley MJ, Neill D, Bernhardt PV, Byriel KA, Kennard CHL. Inorg Chem, 1998, 373635-3639 CrossRef Google Scholar

[35] Willett R, Place H, Middleton M. J Am Chem Soc, 1988, 1108639-8650 CrossRef Google Scholar

[36] Sheleg AU, Dekola TI, Tekhanovich NP. Phys Solid State, 2005, 472138-2140 CrossRef ADS Google Scholar

[37] Vishwakarma AK, Kumari R, Ghalsasi PS, Arulsamy N. J Mol Structure, 2017, 114193-98 CrossRef ADS Google Scholar

[38] Zolfaghari P, de Wijs GA, de Groot RA. J Phys-Condens Matter, 2013, 25295502 CrossRef PubMed ADS Google Scholar

[39] Pabst I, Fuess H, Bats JW. Acta Crystlogr C Cryst Struct Commun, 1987, 43413-416 CrossRef Google Scholar

[40] Smith DW. Coord Chem Rev, 1976, 2193-158 CrossRef Google Scholar

[41] Yi H, Yang D, Xin J, Qi X, Lan Y, Deng Y, Pao CW, Lee JF, Lei A. Nat Commun, 2017, 814794 CrossRef PubMed ADS Google Scholar

[42] Valiente R, Rodríguez F. J Phys-Condens Matter, 1998, 109525-9534 CrossRef ADS Google Scholar

[43] Beattie IR, Gilson TR, Ozin GA. J Chem Soc A, 1969, 0534-541 CrossRef Google Scholar

[44] Witteveen HT, Jongejan DL, Brandwijk V. Mater Res Bull, 1974, 9345-352 CrossRef Google Scholar

[45] Herzog-Cance MH, Jones DJ, El Mejjad R, Rozière J, Tomkinson J. J Chem Soc Faraday Trans, 1992, 882275-2281 CrossRef Google Scholar

[46] Mostafa MF, El-Hakim SA. Phase Transit, 2003, 76587-599 CrossRef Google Scholar

[47] Long GS, Wei M, Willett RD. Inorg Chem, 1997, 363102-3107 CrossRef Google Scholar

[48] Herreros J, Tello MJ, Bocanegra EH. Mater Res Bull, 1984, 19955-960 CrossRef Google Scholar

[49] Li L, Shang X, Wang S, Dong N, Ji C, Chen X, Zhao S, Wang J, Sun Z, Hong M, Luo J. J Am Chem Soc, 2018, 1406806-6809 CrossRef PubMed Google Scholar

[50] Van Oort MJM, Neshvad G, White MA. J Solid State Chem, 1987, 69145-152 CrossRef ADS Google Scholar

  • Figure 1

    (a) Crystal structure of MA2CuCl4 (structural data taken from ICSD NO. 98-011-0695). The dashed Cu–Cl bonds are longer than the solid ones. (b) XRD patterns of MA2CuCl4, EA2CuCl4 and HA2CuCl4 spin-casting films. (c) Photograph images of color change in these copper-based perovskites upon temperature change (color online).

  • Figure 2

    Cu K-edge (a) EXAFS oscillations for Cu foil and hybrid perovskites (MA2CuCl4, EA2CuCl4, HA2CuCl4) measured at room temperature (RT) and 100 °C (HT). (b) Corresponding Fourier transforms for the curves in (a) (color online).

  • Figure 3

    (a) Raman spectra of the copper-based perovskites at room temperature in the spectral region of 50–300 cm−1; (b–d) Raman spectra of (MA)2CuCl4 (b), (EA)2CuCl4 (c) and (HA)2CuCl4 (d) at room temperature (RT) and high temperature (HT) within the same thermal cycle (color online).

  • Figure 4

    (a) Raman spectra of the copper-based perovskites at room temperature in the spectral region of 2800–3000 cm−1. (b–d) Raman spectra of (MA)2CuCl4 (b), (EA)2CuCl4 (c) and (HA)2CuCl4 (d) at room temperature (RT) and high temperature (HT) within the same thermal cycle (color online).

  • Figure 5

    (a–c) Differential thermal scanning (DSC) analysis of (MA)2CuCl4 (a), (EA)2CuCl4 (b) and (HA)2CuCl4 (c) within the thermal cycle between 300 and 390 K; (d) plots of phase transition temperature (determined by DSC results) versus organic cation in these copper-based perovskites (color online).

  • Figure 6

    (a) Thermochromic performance of PVDF drop-casting films on glass substrates containing (MA)2CuCl4, (EA)2CuCl4 and (HA)2CuCl4, respectively; (b) corresponding absorption spectra at room temperature (RT) and high temperatures (color online).

  • Table 1   Structural parameters of copper-based perovskites obtained from EXAFS spectra




    R (Å)


    R factor





































    CN, coordination numbers; R, radial distance; σ2, Debye-Waller factors; R factor, goodness of fit. Fitting parameters were set according to the experimental data in Cu foil by fixing CN=12 from the known crystallographic value.


Contact and support