logo

Semi-crystalline photovoltaic polymers with siloxane-terminated hybrid side-chains

More info
  • ReceivedDec 7, 2016
  • AcceptedJan 3, 2017
  • PublishedMar 1, 2017

Abstract


Funded by

National Research Foundation of Korea(2015R1A2A1A15055605,2015M1A2A2057506,2015R1D1A1A09056905,2016M1A2A2940911)


Acknowledgment

This work was supported by the National Research Foundation of Korea (2015R1A2A1A15055605, 2015M1A2A2057506, 2015R1D1A1A09056905, 2016M1A2A2940911).


Interest statement

The authors declare that they have no conflict of interest.


Contributions statement

These authors contributed equally to this work.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] He Z, Zhong C, Su S, Xu M, Wu H, Cao Y. Nat Photonics, 2012, 6: 591–595. Google Scholar

[2] Li Y. Acc Chem Res, 2012, 45: 723-733 CrossRef PubMed Google Scholar

[3] Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L. Chem Rev, 2015, 115: 12666-12731 CrossRef PubMed Google Scholar

[4] Ye L, Zhang S, Huo L, Zhang M, Hou J. Acc Chem Res, 2014, 47: 1595-1603 CrossRef PubMed Google Scholar

[5] You J, Chen CC, Hong Z, Yoshimura K, Ohya K, Xu R, Ye S, Gao J, Li G, Yang Y. Adv Mater, 2013, 25: 3973-3978 CrossRef PubMed Google Scholar

[6] You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen CC, Gao J, Li G, Yang Y. Nat Commun, 2013, 4: 1446-1455 CrossRef PubMed ADS Google Scholar

[7] Ye L, Zhang S, Zhao W, Yao H, Hou J. Chem Mater, 2014, 26: 3603-3605 CrossRef Google Scholar

[8] Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H. Nat Commun, 2014, 5: 5293-5301 CrossRef PubMed ADS Google Scholar

[9] Chueh CC, Li CZ, Jen AKY. Energy Environ Sci, 2015, 8: 1160-1189 CrossRef Google Scholar

[10] Nguyen TL, Choi H, Ko SJ, Uddin MA, Walker B, Yum S, Jeong JE, Yun MH, Shin TJ, Hwang S, Kim JY, Woo HY. Energy Environ Sci, 2014, 7: 3040-3051 CrossRef Google Scholar

[11] Huo L, Liu T, Sun X, Cai Y, Heeger AJ, Sun Y. Adv Mater, 2015, 27: 2938-2944 CrossRef PubMed Google Scholar

[12] Choi H, Ko SJ, Kim T, Morin PO, Walker B, Lee BH, Leclerc M, Kim JY, Heeger AJ. Adv Mater, 2015, 27: 3318-3324 CrossRef PubMed Google Scholar

[13] Yusoff ARM, Kim D, Kim HP, Shneider FK, da Silva WJ, Jang J. Energy Environ Sci, 2015, 8: 303-316 CrossRef Google Scholar

[14] Hu H, Jiang K, Yang G, Liu J, Li Z, Lin H, Liu Y, Zhao J, Zhang J, Huang F, Qu Y, Ma W, Yan H. J Am Chem Soc, 2015, 137: 14149-14157 CrossRef PubMed Google Scholar

[15] Zheng Z, Zhang S, Zhang M, Zhao K, Ye L, Chen Y, Yang B, Hou J. Adv Mater, 2015, 27: 1189-1194 CrossRef PubMed Google Scholar

[16] Zhou H, Zhang Y, Mai CK, Collins SD, Bazan GC, Nguyen TQ, Heeger AJ. Adv Mater, 2015, 27: 1767-1773 CrossRef PubMed Google Scholar

[17] Chen JD, Cui C, Li YQ, Zhou L, Ou QD, Li C, Li Y, Tang JX. Adv Mater, 2015, 27: 1035-1041 CrossRef PubMed Google Scholar

[18] Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H. Nat Energy, 2016, 1: 15027 CrossRef ADS Google Scholar

[19] Li YQ, Wang QK, Ou QD, Tang JX. Sci China Chem, 2016, 59: 422-435 CrossRef Google Scholar

[20] Zhang S, Ye L, Zhao W, Yang B, Wang Q, Hou J. Sci China Chem, 2015, 58: 248-256 CrossRef Google Scholar

[21] Chen MS, Niskala JR, Unruh DA, Chu CK, Lee OP, Fréchet JMJ. Chem Mater, 2013, 25: 4088-4096 CrossRef Google Scholar

[22] Jung M, Yoon Y, Park JH, Cha W, Kim A, Kang J, Gautam S, Seo D, Cho JH, Kim H, Choi JY, Chae KH, Kwak K, Son HJ, Ko MJ, Kim H, Lee DK, Kim JY, Choi DH, Kim BS. ACS Nano, 2014, 8: 5988-6003 CrossRef PubMed Google Scholar

[23] Lee KC, Song S, Lee J, Kim DS, Kim JY, Yang C. ChemPhysChem, 2015, 16: 1305-1314 CrossRef PubMed Google Scholar

[24] van Franeker JJ, Heintges GHL, Schaefer C, Portale G, Li W, Wienk MM, van der Schoot P, Janssen RAJ. J Am Chem Soc, 2015, 137: 11783-11794 CrossRef PubMed Google Scholar

[25] Li W, Kelchtermans M, Wienk MM, Janssen RAJ. J Mater Chem A, 2013, 1: 15150-15157 CrossRef Google Scholar

[26] Li W, Hendriks KH, Furlan A, Roelofs WSC, Wienk MM, Janssen RAJ. J Am Chem Soc, 2013, 135: 18942-18948 CrossRef PubMed Google Scholar

[27] Li W, Hendriks KH, Furlan A, Roelofs WSC, Meskers SCJ, Wienk MM, Janssen RAJ. Adv Mater, 2014, 26: 1565-1570 CrossRef PubMed Google Scholar

[28] Osaka I, Zhang R, Sauvé G, Smilgies DM, Kowalewski T, McCullough RD. J Am Chem Soc, 2009, 131: 2521-2529 CrossRef PubMed Google Scholar

[29] Lee J, Han AR, Yu H, Shin TJ, Yang C, Oh JH. J Am Chem Soc, 2013, 135: 9540-9547 CrossRef PubMed Google Scholar

[30] Sung A, Ling MM, Tang ML, Bao Z, Locklin J. Chem Mater, 2007, 19: 2342-2351 CrossRef Google Scholar

[31] Li H, Mei J, Ayzner AL, Toney MF, Tok JBH, Bao Z. Org Electron, 2012, 13: 2450-2460 CrossRef Google Scholar

[32] Torsi L, Farinola GM, Marinelli F, Tanese MC, Omar OH, Valli L, Babudri F, Palmisano F, Zambonin PG, Naso F. Nat Mater, 2008, 7: 412-417 CrossRef PubMed ADS Google Scholar

[33] Akkerman HB, Mannsfeld SCB, Kaushik AP, Verploegen E, Burnier L, Zoombelt AP, Saathoff JD, Hong S, Atahan-Evrenk S, Liu X, Aspuru-Guzik A, Toney MF, Clancy P, Bao Z. J Am Chem Soc, 2013, 135: 11006-11014 CrossRef PubMed Google Scholar

[34] Back JY, Yu H, Song I, Kang I, Ahn H, Shin TJ, Kwon SK, Oh JH, Kim YH. Chem Mater, 2015, 27: 1732-1739 CrossRef Google Scholar

[35] Mei J, Kim DH, Ayzner AL, Toney MF, Bao Z. J Am Chem Soc, 2011, 133: 20130-20133 CrossRef PubMed Google Scholar

[36] Lei T, Dou JH, Pei J. Adv Mater, 2012, 24: 6457-6461 CrossRef PubMed Google Scholar

[37] Zhang F, Hu Y, Schuettfort T, Di C, Gao X, McNeill CR, Thomsen L, Mannsfeld SCB, Yuan W, Sirringhaus H, Zhu D. J Am Chem Soc, 2013, 135: 2338-2349 CrossRef PubMed Google Scholar

[38] Zhang ZG, Li Y. Sci China Chem, 2015, 58: 192-209 CrossRef Google Scholar

[39] Mark JE. Acc Chem Res, 2004, 37: 946-953 CrossRef PubMed Google Scholar

[40] Mei J, Wu HC, Diao Y, Appleton A, Wang H, Zhou Y, Lee WY, Kurosawa T, Chen WC, Bao Z. Adv Funct Mater, 2015, 25: 3455-3462 CrossRef Google Scholar

[41] Mei J, Bao Z. Chem Mater, 2014, 26: 604-615 CrossRef Google Scholar

[42] Lee J, Han AR, Kim J, Kim Y, Oh JH, Yang C. J Am Chem Soc, 2012, 134: 20713-20721 CrossRef PubMed Google Scholar

[43] Li Y, Ko SJ, Park SY, Choi H, Nguyen TL, Uddin MA, Kim T, Hwang S, Kim JY, Woo HY. J Mater Chem A, 2016, 4: 9967-9976 CrossRef Google Scholar

[44] Pommerehne J, Vestweber H, Guss W, Mahrt RF, Bässler H, Porsch M, Daub J. Adv Mater, 1995, 7: 551-554 CrossRef Google Scholar

[45] Liu X, Hsu BBY, Sun Y, Mai CK, Heeger AJ, Bazan GC. J Am Chem Soc, 2014, 136: 16144-16147 CrossRef PubMed Google Scholar

[46] Zhang S, Ye L, Wang Q, Li Z, Guo X, Huo Li, Fan H, Hou JH. J Phys Chem C, 2013, 17: 9550–9557. Google Scholar

[47] Zhang S, Yang B, Liu D, Zhang H, Zhao W, Wang Q, He C, Hou J. Macromolecules, 2016, 49: 120-126 CrossRef ADS Google Scholar

[48] Guo X, Zhou N, Lou SJ, Smith J, Tice DB, Hennek JW, Ortiz RP, Navarrete JTL, Li S, Strzalka J, Chen LX, Chang RPH, Facchetti A, Marks TJ. Nat Photon, 2013, 7: 825-833 CrossRef ADS Google Scholar

[49] Uddin MA, Lee TH, Xu S, Park SY, Kim T, Song S, Nguyen TL, Ko S, Hwang S, Kim JY, Woo HY. Chem Mater, 2015, 27: 5997-6007 CrossRef Google Scholar

[50] Li Y, Lee TH, Park SY, Uddin MA, Kim T, Hwang S, Kim JY, Woo HY. Polym Chem, 2016, 7: 4638-4646 CrossRef Google Scholar

[51] Kim G, Song S, Lee J, Kim T, Lee TH, Walker B, Kim JY, Yang C. Adv Energy Mater, 2015, 5: 1500844-1500853 CrossRef Google Scholar

[52] Dennler G, Scharber MC, Brabec CJ. Adv Mater, 2009, 21: 1323-1338 CrossRef Google Scholar

  • Figure 1

    (a) Synthetic scheme of monomer 2 and three polymers; normalized UV-Vis absorption spectra of polymers (b) in chloroform and (c) in film; (d) cyclic voltammograms of thin films of three polymers (color online).

  • Figure 2

    (a) J-V characteristics and (b) EQE spectra of PSC devices with and without DPE as a processing additive (color online).

  • Figure 3

    Topographic morphology images (2.5 μm×2.5 μm) of polymer:PC71BM blends (a–c) without and (d–f) with 3 vol% DPE. (a, d) PPsiDTBT, (b, e) PPsiDTFBT, (c, f) PPsiDT2FBT BHJ films deposited on ITO/PEDOT:PSS under the same condition for the optimized devices. RMS roughness values are at the left-bottom corner of each figure (color online).

  • Figure 4

    GIWAXS images of (a) neat polymer films and (b) blends of polymer:PC71BM with DPE; (c) in-plane and out-of-plane line cuts of the above patterns (color online).

  • Figure 5

    Light intensity dependence of (a) Jsc and (b) Voc; (c) photocurrent versus effective voltage (color online).

  • Table 1   Optical and electrochemical properties of polymers

    Polymers

    Mn (kDa) a)

    PDI a)

    λonset (film) (nm) b)

    Egopt (eV) b)

    HOMO (eV) c)

    LUMO (eV) d)

    PPsiDTBT

    43

    1.7

    730

    1.70

    −5.11

    −3.41

    PPsiDTFBT

    39

    2.8

    739

    1.68

    −5.18

    −3.50

    PPsiDT2FBT

    40

    2.0

    717

    1.73

    −5.25

    −3.52

    Number-average molecular weight and PDI determined by GPC in o-dichlorobenzene at 80 °C; b) optical band gap was estimated from the optical absorption onset in film; c) HOMO level was estimated from the tangential onset of oxidation (Eoxonset) by cyclic voltammetry using equation HOMO (eV)=-(Eoxonset-E1/2ferrocene+4.8); d) LUMO level was estimated from the HOMO value and optical band gap in film.

  • Table 2   Summary of photovoltaic characteristics of polymers

    Polymer

    Blend ratio

    Additive

    (3% DPE)

    Jsc (mA cm−2)

    Cal. Jsc (mA cm−2)

    Voc (V)

    FF

    PCE (%) a)

    PPSiDTBT

    1:3

    X

    5.13

    4.51

    0.55

    0.63

    1.78 (1.54±0.25)

    O

    8.82

    8.82

    0.56

    0.64

    3.16 (2.97±0.18)

    PPSiDTFBT

    1:3

    X

    9.68

    9.76

    0.55

    0.65

    3.52 (3.29±0.23)

    O

    11.6

    12.12

    0.58

    0.66

    4.40 (4.21±0.18)

    PPSiDT2FBT

    1:2

    X

    10.2

    9.96

    0.62

    0.61

    3.85 (3.63±0.21)

    O

    12.59

    12.06

    0.66

    0.68

    5.65 (5.49±0.16)

    The average values and standard deviations of the PCEs based on the 10 devices. Thickness of active layers was determined to be 160–180 nm.

qqqq

Contact and support