logo

Redox-responsive carbometalated ruthenium and osmium complexes

More info
  • ReceivedAug 17, 2016
  • AcceptedAug 28, 2016
  • PublishedNov 2, 2016

Abstract


Funded by

National Natural Science Foundation of China(21271176,21472196,21521062,21501183)

Ministry of Science and Technology of China(2012YQ120060)

Strategic Priority Research Program of the Chinese Academy of Sciences(XDB 12010400)


Acknowledgment

Acknowledgments This work was supported by the National Natural Science Foundation of China (21271176, 21472196, 21521062, 21501183), the Ministry of Science and Technology of China (2012YQ120060), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB 12010400).


Interest statement

Conflict of interest The authors declare that they have no conflict of interest.


References

[1] Li H, Qu DH. Sci China Chem, 2015, 58: 916-921 CrossRef Google Scholar

[2] Guragain S, Bastakoti BP, Malgras V, Nakashima K, Yamauchi Y. Chem Eur J, 2015, 21: 13164-13174 CrossRef PubMed Google Scholar

[3] Nagarkar SS, Desai AV, Ghosh SK. Chem Asian J, 2014, 9: 2358-2376 CrossRef PubMed Google Scholar

[4] Bléger D, Hecht S. Angew Chem Int Ed, 2015, 54: 11338-11349 CrossRef PubMed Google Scholar

[5] Zarzar LD, Aizenberg J. Acc Chem Res, 2014, 47: 530-539 CrossRef PubMed Google Scholar

[6] Jochum FD, Theato P. Chem Soc Rev, 2013, 42: 7468-7483 CrossRef PubMed Google Scholar

[7] Qu DH, Wang QC, Zhang QW, Ma X, Tian H. Chem Rev, 2015, 115: 7543-7588 CrossRef PubMed Google Scholar

[8] Xu K, Zhao J, Cui X, Ma J. J Phys Chem A, 2015, 119: 468-481 CrossRef PubMed ADS Google Scholar

[9] Xu K, Zhao J, Cui X, Ma J. Chem Commun, 2015, 51: 1803-1806 CrossRef PubMed Google Scholar

[10] Xiao C, Zhao WY, Zhou DY, Huang Y, Tao Y, Wu WH, Yang C. Chin Chem Lett, 2015, 26: 817-824 CrossRef Google Scholar

[11] Zhang M, Yan X, Huang F, Niu Z, Gibson HW. Acc Chem Res, 2014, 47: 1995-2005 CrossRef PubMed Google Scholar

[12] Ma X, Tian H. Acc Chem Res, 2014, 47: 1971-1981 CrossRef PubMed Google Scholar

[13] Guo DS, Liu Y. Acc Chem Res, 2014, 47: 1925-1934 CrossRef PubMed Google Scholar

[14] Zhang SJ, Wang Q, Cheng M, Qian XH, Yang Y, Jiang JL, Wang LY. Chin Chem Lett, 2015, 26: 885-888 CrossRef Google Scholar

[15] Zhang M, Gao J, Chen J, Cai M, Jiang J, Tian Z, Wang H. Sci China Chem, 2016, 59: 848-852 CrossRef Google Scholar

[16] Huang C, Rudnev AV, Hong W, Wandlowski T. Chem Soc Rev, 2015, 44: 889-901 CrossRef PubMed Google Scholar

[17] Rikken RSM, Nolte RJM, Maan JC, van Hest JCM, Wilson DA, Christianen PCM. Soft Matter, 2014, 10: 1295-1308 CrossRef PubMed ADS Google Scholar

[18] van Rhee PG, Rikken RSM, Abdelmohsen LKEA, Maan JC, Nolte RJM, van Hest JCM, Christianen PCM, Wilson DA. Nat Commun, 2014, 5: 5010 CrossRef PubMed ADS Google Scholar

[19] Wang Q, Cheng M, Zhao Y, Yang Z, Jiang J, Wang L, Pan Y. Chem Commun, 2014, 50: 15585-15588 CrossRef PubMed Google Scholar

[20] Hu XY, Chen Y, Liu Y. Chin Chem Lett, 2015, 26: 862-866 CrossRef Google Scholar

[21] Lou Z, Li P, Han K. Acc Chem Res, 2015, 48: 1358-1368 CrossRef PubMed Google Scholar

[22] Canevet D, Sallé M, Zhang G, Zhang D, Zhu D. Chem Commun, 2009: 2245–2269. Google Scholar

[23] Nakahata M, Takashima Y, Yamaguchi H, Harada A. Nat Commun, 2011, 2: 511 CrossRef PubMed ADS Google Scholar

[24] Klajn R, Stoddart JF, Grzybowski BA. Chem Soc Rev, 2010, 39: 2203-2237 CrossRef PubMed Google Scholar

[25] Fahrenbach AC, Bruns CJ, Li H, Trabolsi A, Coskun A, Stoddart JF. Acc Chem Res, 2014, 47: 482-493 CrossRef PubMed Google Scholar

[26] Fahrenbach AC, Bruns CJ, Cao D, Stoddart JF. Acc Chem Res, 2012, 45: 1581-1592 CrossRef PubMed Google Scholar

[27] Moriuchi T, Hirao T. Acc Chem Res, 2012, 45: 347-360 CrossRef PubMed Google Scholar

[28] Fabre B. Acc Chem Res, 2010, 43: 1509-1518 CrossRef PubMed Google Scholar

[29] Whittell GR, Hager MD, Schubert US, Manners I. Nat Mater, 2011, 10: 176-188 CrossRef PubMed ADS Google Scholar

[30] Sakamoto R, Wu KH, Matsuoka R, Maeda H, Nishihara H. Chem Soc Rev, 2015, 44: 7698-7714 CrossRef PubMed Google Scholar

[31] Ni M, Zhang N, Xia W, Wu X, Yao C, Liu X, Hu XY, Lin C, Wang L. J Am Chem Soc, 2016, 138: 6643-6649 CrossRef PubMed Google Scholar

[32] Gong ZL, Zhong YW. Sci China Chem, 2015, 58: 1444-1450 CrossRef Google Scholar

[33] Gong ZL, Shao JY, Zhong YW. J Electrochem, 2016, 22: 244– 259. Google Scholar

[34] Jiang X, Zhu N, Zhao D, Ma Y. Sci China Chem, 2016, 59: 40-52 CrossRef Google Scholar

[35] Zhong YW, Gong ZL, Shao JY, Yao J. Coord Chem Rev, 2016, 312: 22-40 CrossRef Google Scholar

[36] Tang JH, Yao CJ, Cui BB, Zhong YW. Chem Record, 2016, 16: 754-767 CrossRef PubMed Google Scholar

[37] Shen JJ, Zhong YW. Sci Rep, 2015, 5: 13835 CrossRef PubMed ADS Google Scholar

[38] Kong DD, Xue LS, Jang R, Liu B, Meng XG, Jin S, Ou YP, Hao X, Liu SH. Chem Eur J, 2015, 21: 9895-9904 CrossRef PubMed Google Scholar

[39] Zhang J, Zhang MX, Sun CF, Xu M, Hartl F, Yin J, Yu GA, Rao L, Liu SH. Organometallics, 2015, 34: 3967-3978 CrossRef Google Scholar

[40] Zhang DB, Wang JY, Wen HM, Chen ZN. Organometallics, 2014, 33: 4738-4746 CrossRef Google Scholar

[41] Wen HM, Yang Y, Zhou XS, Liu JY, Zhang DB, Chen ZB, Wang JY, Chen ZN, Tian ZQ. Chem Sci, 2013, 4: 2471-2477 CrossRef Google Scholar

[42] Zhang LY, Zhang HX, Ye S, Wen HM, Chen ZN, Osawa M, Uosaki K, Sasaki Y. Chem Commun, 2011, 47: 923-925 CrossRef PubMed Google Scholar

[43] Yao CJ, Zhong YW, Yao J. J Am Chem Soc, 2011, 133: 15697-15706 CrossRef PubMed Google Scholar

[44] Yao CJ, Zhong YW, Nie HJ, Abruña HD, Yao J. J Am Chem Soc, 2011, 133: 20720-20723 CrossRef PubMed Google Scholar

[45] Yao CJ, Nie HJ, Yang WW, Yao J, Zhong YW. Inorg Chem, 2015, 54: 4688-4698 CrossRef PubMed Google Scholar

[46] Yao CJ, Yao J, Zhong YW. Inorg Chem, 2012, 51: 6259-6263 CrossRef PubMed Google Scholar

[47] Yang WW, Shao JY, Zhong YW. Eur J Inorg Chem, 2015, 2015: 3195-3204 CrossRef Google Scholar

[48] Wang L, Yang WW, Zhong YW, Yao J. Dalton Trans, 2013, 42: 5611-5614 CrossRef PubMed Google Scholar

[49] Shao JY, Yang WW, Yao J, Zhong YW. Inorg Chem, 2012, 51: 4343-4351 CrossRef PubMed Google Scholar

[50] Ou YP, Xia J, Zhang J, Xu M, Yin J, Yu GA, Liu SH. Chem Asian J, 2013, 8: 2023-2032 CrossRef PubMed Google Scholar

[51] Ou YP, Zhang J, Xu M, Xia J, Hartl F, Yin J, Yu GA, Liu SH. Chem Asian J, 2014, 9: 1152-1160 CrossRef PubMed Google Scholar

[52] Zhang J, Sun CF, Zhang MX, Hartl F, Yin J, Yu GA, Rao L, Liu SH. Dalton Trans, 2016, 45: 768-782 CrossRef PubMed Google Scholar

[53] Mondal P, Chatterjee M, Paretzki A, Beyer K, Kaim W, Lahiri GK. Inorg Chem, 2016, 55: 3105-3116 CrossRef PubMed Google Scholar

[54] Mondal P, Das A, Lahiri GK. Inorg Chem, 2016, 55: 1208-1218 CrossRef PubMed Google Scholar

[55] Shi J, Chai Z, Tang R, Hua J, Li Q, Li Z. Sci China Chem, 2015, 58: 1144-1151 CrossRef Google Scholar

[56] Xiao J, Shi J, Li D, Meng Q. Sci China Chem, 2015, 58: 221–238. Google Scholar

[57] Yao CJ, Zheng RH, Shi Q, Zhong YW, Yao J. Chem Commun, 2012, 48: 5680-5682 CrossRef PubMed Google Scholar

[58] Cui BB, Yao CJ, Yao J, Zhong YW. Chem Sci, 2014, 5: 932-941 CrossRef Google Scholar

[59] Polit W, Exner T, Wuttke E, Winter RF. BioInorg React Mech 2012, 8: 85–105. Google Scholar

[60] Nie HJ, Shao JY, Yao CJ, Zhong YW. Chem Commun, 2014, 50: 10082-10085 CrossRef PubMed Google Scholar

[61] Gong ZL, Zhong YW. Organometallics, 2013, 32: 7495-7502 CrossRef Google Scholar

[62] Gong ZL, Cui BB, Yang WW, Yao J, Zhong YW. Electrochim Acta, 2014, 130: 748-753 CrossRef Google Scholar

[63] Kurita T, Nishimori Y, Toshimitsu F, Muratsugu S, Kume S, Nishihara H. J Am Chem Soc, 2010, 132: 4524-4525 CrossRef PubMed Google Scholar

[64] Simão C, Mas-Torrent M, Crivillers N, Lloveras V, Artés JM, Gorostiza P, Veciana J, Rovira C. Nat Chem, 2011, 3: 359-364 CrossRef PubMed ADS Google Scholar

[65] Flamigni L, Collin JP, Sauvage JP. Acc Chem Res, 2008, 41: 857-871 CrossRef PubMed Google Scholar

[66] Cui BB, Tang JH, Yao J, Zhong YW. Angew Chem Int Ed, 2015, 54: 9192-9197 CrossRef PubMed Google Scholar

[67] Tang JH, Shao JY, He YQ, Wu SH, Yao J, Zhong YW. Chem Eur J, 2016, 22: 10341-10345 CrossRef PubMed Google Scholar

[68] Yao CJ, Zhong YW, Yao J. Inorg Chem, 2013, 52: 4040-4045 CrossRef PubMed Google Scholar

[69] Sun MJ, Nie HJ, Yao JN, Zhong YW. Chin Chem Lett, 2015, 26: 649-652 CrossRef Google Scholar

[70] Grelaud G, Cifuentes MP, Schwich T, Argouarch G, Petrie S, Stranger R, Paul F, Humphrey MG. Eur J Inorg Chem, 2012, 2012: 65-75 CrossRef Google Scholar

[71] Shao JY, Yao CJ, Cui BB, Gong ZL, Zhong YW. Chin Chem Lett, 2016, 2016, 27: 1105–1114. Google Scholar

  • Figure 1

    The tpb-bridged diruthenium complex 12+. (a) Molecular structure; (b) cyclic voltammogram (CV) in 0.1 M n-Bu4NClO4/CH3CN at 100 mV/s; (c) EPR spectrum of 13+ at 77 K; (d) Vis/NIR absorption spectra at different redox state. Adapted from Ref. [43]. Copyright 2011 American Chemical Society (color online).

  • Figure 2

    The tppyr-bridged diruthenium complex 22+. (a) Molecular structure; (b) CV in 0.1 M n-Bu4NClO4/DMF at 100 mV/s; (c) EPR spectrum of 23+ at 77 K; (d) Vis/NIR absorption spectra at different redox state. Adapted from Ref. [45]. Copyright 2015 American Chemical Society (color online).

  • Figure 3

    Symmetric diruthenium complexes 3n+5n+ and the IVCT parameters in the mixed-valent state (color online).

  • Figure 4

    The thiophene-bridged alkynyl diruthenium complex 6. (a) Molecular structure; (b) absorption spectral changes in CH2Cl2 upon stepwise oxidation with ferrocenium hexafluorophosphate; (c) IR spectra of 6n+ at different redox states; (d) EPR spectrum of 6+ at 298 K. Adapted from Ref. [50]. Copyright 2013 John Wiley & Sons, Inc. (color online).

  • Figure 5

    Diruthenium complexes 7 and 8 (color online).

  • Figure 6

    The ruthenium-amine conjugated complex 9+. (a) Molecular structure; (b) CV in 0.1 M n-Bu4NClO4/CH3CN at 100 mV/s; (c) EPR spectrum of 92+ at room temperature; (d) Vis/NIR absorption spectra and pictures of the solution at different redox states. Adapted from Ref. [57]. Copyright 2012 The Royal Society of Chemistry (color online).

  • Figure 7

    The ruthenium-amine conjugated complex 10. (a) Molecular structure; (b) Vis/NIR absorption spectra at different redox states; (c) EPR spectrum of 10+ at room temperture; (d) IR spectral changes upon stepwise oxidations by electrolysis. Adapted from Ref. [59]. Copyright 2012 Walter de Gruyter GmbH (color online).

  • Figure 8

    The osmium-amine conjugated complex 11+. (a) Molecular structure; (b) CV in 0.1 M n-Bu4NClO4/CH3CN at 100 mV/s; (c,d) Vis/NIR absorption spectral changes and pictures of the solution upon stepwise oxidations. Adapted from Ref. [60]. Copyright 2014 The Royal Society of Chemistry (color online).

  • Figure 9

    Cyclometalated complex 12+ for Cu2+ sensing. (a) CV spectral changes in CH3CN/H2O (4:1) upon addition of 1 equiv. Cu2+; (b) absorption spectral and solution color change upon addition of 2 equiv. Cu2+; (c) ion recognition mechanism. Tol is p-tolyl group. Adapted from Ref. [61]. Copyright 2013 American Chemical Society (color online).

  • Figure 10

    The amine-bridged diruthenium complex 132+. (a) Molecular structure; (b) CV in 0.1 M n-Bu4NClO4/CH2Cl2 at 100 mV/s; (c) EPR spectrum of 133+ at room temperature; (d) Vis/NIR absorption spectral changes upon stepwise oxidations. Adapted from Ref. [66]. Copyright 2015 John Wiley & Sons, Inc. (color online).

  • Figure 11

    The ruthenium-amine conjugated four-center compound 142+. (a) Molecular structure; (b) CV and differential pulse voltammogram (DPV) in 0.1 M n-Bu4NClO4/CH2Cl2 at 100 mV/s; (c) EPR spectrum of 143+ at room temperature; (d, e) Vis/NIR absorption spectral changes upon stepwise oxidations. Adapted from Ref. [68]. Copyright 2013 American Chemical Society (color online).

  • Figure 12

    Multi-centre compounds 1517 (color online).

qqqq

Contact and support